This documentation is automatically generated by online-judge-tools/verification-helper
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_1_A require "../../src/graph/dijkstra" require "../../src/scanner" n, m, s = input(i, i, i) graph = DiGraph.new n, input({i, i, i}[m]) puts graph.dijkstra(s).join('\n') { |d| d || "INF" }
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_1_A # require "../../src/graph/dijkstra" # require "../datastructure/binary_heap" class BinaryHeap(T) # Creates a new empty heap. def initialize @heap = Array(T).new @compare_proc = nil end # Creates a new empty heap backed by a buffer that is initially *initial_capacity* big (default: `0`). # # ``` # a = BinaryHeap.new(3) # a << 3 << 1 << 2 # a.pop # => 1 # a.pop # => 2 # a.pop # => 3 # ``` def initialize(initial_capacity : Int = 0) @heap = Array(T).new(initial_capacity) @compare_proc = nil end # Creates a new heap from the elements in *enumerable*. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.pop # => 1 # a.pop # => 2 # a.pop # => 3 # ``` def initialize(enumerable : Enumerable(T)) initialize enumerable.each { |x| add(x) } end # Creates a new empty heap with the custom comperator. # # The block must implement a comparison between two elements *a* and *b*, where `a < b` returns `-1`, # `a == b` returns `0`, and `a > b` returns `1`. The comparison operator `#<=>` can be used for this. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.pop # => 1 # b = BinaryHeap.new [3, 1, 2] { |a, b| b <=> a } # b.pop # => 3 # ``` def initialize(initial_capacity : Int = 0, &block : T, T -> Int32?) @heap = Array(T).new(initial_capacity) @compare_proc = block end # :ditto: def initialize(enumerable : Enumerable(T), &block : T, T -> Int32?) initialize &block enumerable.each { |x| add(x) } end include Enumerable(T) include Iterable(T) def_clone # Returns true if both heap have the same elements. def ==(other : BinaryHeap(T)) : Bool return false if size != other.size @heap.sort == other.@heap.sort end # Returns the number of elements in the heap. def size : Int32 @heap.size end # Returns `true` if `self` is empty, `false` otherwise. def empty? : Bool @heap.empty? end # Removes all elements from the heap and returns `self`. def clear : self @heap.clear self end # Returns the lowest value in the `self`. # If the `self` is empty, calls the block and returns its value. def top(&block) @heap.first { yield } end # Returns the lowest value in the `self`. # If the `self` is empty, returns `nil`. def top? : T? top { nil } end # Returns the lowest value in the `self`. # If the `self` is empty, raises `IndexError`. def top : T top { raise IndexError.new } end # Requires `0 <= i < size`, `0 <= j < size`. private def compare(i : Int32, j : Int32) x, y = @heap.unsafe_fetch(i), @heap.unsafe_fetch(j) if @compare_proc v = @compare_proc.not_nil!.call(x, y) raise ArgumentError.new("Comparison of #{x} and #{y} failed") if v.nil? v > 0 else x > y end end # Adds *object* to the heap and returns `self`. def add(object : T) : self @heap << object i = size - 1 parent = i.pred // 2 while i > 0 && compare(parent, i) @heap.swap(parent, i) i, parent = parent, parent.pred // 2 end self end # :ditto: def <<(object : T) : self add(object) end # Removes the lowest value from `self` and returns the removed value. # If the array is empty, the given block is called. def pop(&block) case size when 0 yield when 1 @heap.pop else value = @heap.unsafe_fetch(0) @heap[0] = @heap.pop i = 0 loop do left, right = i * 2 + 1, i * 2 + 2 j = if right < size && compare(i, right) compare(left, right) ? right : left elsif left < size && compare(i, left) left else break end @heap.swap(i, j) i = j end value end end # Like `#pop`, but returns `nil` if `self` is empty. def pop? : T? pop { nil } end # Removes the lowest value from `self` and returns the removed value. # Raises `IndexError` if heap is of 0 size. def pop : T pop { raise IndexError.new } end # Removes the last *n* values from `self` ahd returns the removed values. def pop(n : Int) : Array(T) raise ArgumentError.new unless n >= 0 n = Math.min(n, size) Array.new(n) { pop } end # Yields each element of the heap, and returns `nil`. def each(&) : Nil @heap.each { |elem| yield elem } end # Returns an iterator for each element of the heap. def each @heap.each end # Returns a new array with all elements sorted. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.sort # => [1, 2, 3] # b = BinaryHeap.new [3, 1, 2] { |a, b| b <=> a } # b.sort # => [3, 2, 1] # ``` def sort : Array(T) if @compare_proc @heap.sort { |a, b| @compare_proc.not_nil!.call(a, b) } else @heap.sort end end # Returns the elements as an Array. # # ``` # BinaryHeap{3, 1, 2}.to_a # => [1, 3, 2] # ``` def to_a : Array(T) @heap.dup end # Writes a string representation of the heap to `io`. # # ``` # BinaryHeap{1, 2}.to_s # => "BinaryHeap{1, 2}" # ``` def to_s(io : IO) : Nil io << "BinaryHeap{" # TODO: use join each_with_index do |x, i| io << ", " if i > 0 io << x end io << '}' end # Writes a string representation of the heap to `io`. # # ``` # BinaryHeap{1, 2}.inspect # => "BinaryHeap{1, 2}" # ``` def inspect(io : IO) : Nil to_s(io) end end # require "../graph" # require "./graph/edge" struct WeightedEdge(T) include Comparable(WeightedEdge(T)) property to : Int32, cost : T def initialize(@to, @cost : T) end def <=>(other : WeightedEdge(T)) {cost, to} <=> {other.cost, other.to} end def to_s(io) : Nil io << '(' << to << ", " << cost << ')' end def inspect(io) : Nil io << "->" << to << '(' << cost << ')' end end struct WeightedEdge2(T) include Comparable(WeightedEdge2(T)) property from : Int32, to : Int32, cost : T def initialize(@from, @to, @cost : T) end def initialize(@from, edge : WeightedEdge(T)) @to, @cost = edge.to, edge.cost end def <=>(other : WeightedEdge2(T)) {cost, from, to} <=> {other.cost, other.from, other.to} end def reverse : self WeightedEdge2(T).new(to, from, cost) end def sort : self WeightedEdge2(T).new(*{to, from}.minmax, cost) end def to_s(io) : Nil io << '(' << from << ", " << to << ", " << cost << ')' end def inspect(io) : Nil io << from << "->" << to << '(' << cost << ')' end end struct UnweightedEdge property to : Int32 def initialize(@to) end def initialize(@to, cost) end def cost : Int32 1 end def to_s(io) : Nil io << to end def inspect(io) : Nil io << "->" << to end end struct UnweightedEdge2 property from : Int32, to : Int32 def initialize(@from, @to) end def initialize(@from, @to, cost) end def initialize(@from, edge : UnweightedEdge) @to = edge.to end def cost : Int32 1 end def reverse : self UnweightedEdge2.new(to, from) end def sort : self UnweightedEdge2.new(*{to, from}.minmax) end def to_s(io) : Nil io << '(' << from << ", " << to << ')' end def inspect(io) : Nil io << from << "->" << to end end module Graph(Edge, Edge2) include Enumerable(Edge2) getter graph : Array(Array(Edge)) def initialize(size : Int) @graph = Array(Array(Edge)).new(size) { [] of Edge } end def initialize(size : Int, edges : Enumerable) initialize(size) add_edges(edges) end # Add *edge*. abstract def <<(edge : Edge2) # :ditto: def <<(edge : Tuple) : self self << Edge2.new(*edge) end def add_edges(edges : Enumerable) : self edges.each { |edge| self << edge } self end delegate size, :[], to: @graph # Yields each edge of the graph, ans returns `nil`. def each(&) : Nil (0...size).each do |v| graph[v].each do |edge| yield Edge2.new(v, edge) end end end def each_child(vertex : Int, parent, &block) : Nil graph[vertex].each do |edge| yield edge if edge.to != parent end end def each_child(vertex : Int, parent) graph[vertex].each.reject(&.to.== parent) end def reverse : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, reversed| reversed << edge.reverse end else dup end end def to_undirected : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, graph| graph << edge << edge.reverse end else dup end end def to_s(io : IO) : Nil io << '[' join(", ", io) do |edge, io| edge.inspect io end io << ']' end def inspect(io : IO) : Nil io << "[\n" graph.each do |edges| io << " " << edges << ",\n" end io << ']' end end class DiGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) self end end class UnGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) @graph[edge.to] << WeightedEdge.new(edge.from, edge.cost) self end end class UnweightedDiGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) self end end class UnweightedUnGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) @graph[edge.to] << UnweightedEdge.new(edge.from) self end end module Graph(Edge, Edge2) # Returns the array of distance of each node from *start* or `nil`. def dijkstra(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end dist end # Returns the array of distance of each node from *start*. def dijkstra!(start : Int) dijkstra(start).map(&.not_nil!) end # Returns the distance of *start* to *goal* or `nil`. def dijkstra(start : Int, goal : Int) raise ArgumentError.new unless 0 <= start < size && 0 <= goal < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop return d if v == goal next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end end # Returns the distance of *start* to *goal*. def dijkstra!(start : Int, goal : Int) dijkstra(start, goal).not_nil! end def dijkstra_with_prev(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero prev = Array(Int32?).new(size, nil) until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist prev[edge.to] = v que << {edge.to, next_dist} end end end {dist, prev} end def dijkstra_with_path(start : Int, goal : Int) dist, prev = dijkstra_with_prev(start) if d = dist[goal] {d, Graph.restore_path(prev, goal)} end end def self.restore_path(prev : Array(Int32?), v : Int) : Array(Int32) v = v.to_i path = [v] while v = prev[v] path << v end path.reverse end end # require "../../src/scanner" module Scanner extend self private def skip_to_not_space(io) peek = io.peek not_space = peek.index { |x| x != 32 && x != 10 } || peek.size io.skip(not_space) end def c(io = STDIN) skip_to_not_space(io) io.read_char.not_nil! end private def int(int_type : T.class, io = STDIN) : T forall T skip_to_not_space(io) value = T.zero signed = false case x = io.read_byte when nil raise IO::EOFError.new when 45 signed = true when 48..57 value = T.new 48 &- x else raise "Unexpected char: #{x.chr}" end loop do peek = io.peek return signed ? value : -value if peek.empty? i = 0 while i < peek.size c = peek.unsafe_fetch(i) if 48 <= c <= 57 value = value &* 10 &- c &+ 48 i &+= 1 elsif c == 32 || c == 10 io.skip(i &+ 1) return signed ? value : -value else raise "Unexpected char: #{c.chr}" end end io.skip(i) end end private def uint(uint_type : T.class, io = STDIN) : T forall T skip_to_not_space(io) value = T.zero found_digit = false loop do peek = io.peek if peek.empty? if found_digit return value else raise IO::EOFError.new end end i = 0 while i < peek.size c = peek.unsafe_fetch(i) if 48 <= c <= 57 found_digit = true value = value &* 10 &+ c &- 48 i &+= 1 elsif c == 32 || c == 10 io.skip(i &+ 1) return value else raise "Unexpected char: #{c.chr}" end end io.skip(i) end end def i(io = STDIN) int(Int32, io) end {% for n in [8, 16, 32, 64, 128] %} def i{{n}}(io = STDIN) int(Int{{n}}, io) end def u{{n}}(io = STDIN) uint(UInt{{n}}, io) end {% end %} {% for method in [:f, :f32, :f64] %} def {{method.id}}(io = STDIN) s(io).to_{{method.id}} end {% end %} def s(io = STDIN) skip_to_not_space(io) peek = io.peek if peek.empty? raise IO::EOFError.new end if index = peek.index { |x| x == 32 || x == 10 } io.skip(index + 1) return String.new(peek[0, index]) end String.build do |buffer| loop do buffer.write peek io.skip(peek.size) peek = io.peek break if peek.empty? if index = peek.index { |x| x == 32 || x == 10 } buffer.write peek[0, index] io.skip(index + 1) break end end end end end macro internal_input(type, else_ast, io) {% if Scanner.class.has_method?(type.id) %} Scanner.{{type.id}}({{io}}) {% elsif type.stringify == "String" %} Scanner.s({{io}}) {% elsif type.stringify == "Char" %} Scanner.c({{io}}) {% elsif type.is_a?(Path) %} {% if type.resolve.class.has_method?(:scan) %} {{type}}.scan(Scanner, {{io}}) {% else %} {{type}}.new(Scanner.s({{io}})) {% end %} {% elsif String.has_method?("to_#{type}".id) %} Scanner.s({{io}}).to_{{type.id}} {% else %} {{else_ast}} {% end %} end macro internal_input_array(type, args, io) {% for i in 0...args.size %} %size{i} = input({{args[i]}}, io: {{io}}) {% end %} {% begin %} {% for i in 0...args.size %} Array.new(%size{i}) { {% end %} input({{type.id}}, io: {{io}}) {% for i in 0...args.size %} } {% end %} {% end %} end # Inputs from *io*. # # ### Specifications # # ```plain # AST | Example | Expanded code # ------------------+---------------------+--------------------------------------- # Uppercase string | Int32, Int64, etc. | {}.new(Scanner.s) # | s, c, i, iN, uN | Scanner.{} # | f, big_i, etc. | Scanner.s.to_{} # Call [] | type[size] | Array.new(input(size)) { input(type) } # TupleLiteral | {t1, t2, t3} | {input(t1), input(t2), input(t3)} # ArrayLiteral | [t1, t2, t3] | [input(t1), input(t2), input(t3)] # HashLiteral | {t1 => t2} | {input(t1) => input(t2)} # NamedTupleLiteral | {a: t1, b: t2} | {a: input(t1), b: input(t2)} # RangeLiteral | t1..t2 | input(t1)..input(t2) # Expressions | (exp1; exp2) | (input(exp1); input(exp2);) # If | cond ? t1 : t2 | input(cond) ? input(t1) : input(t2) # Assign | target = value | target = input(value) # ``` # # ### Examples # # Input: # ```plain # 5 3 # foo bar # 1 2 3 4 5 # ``` # ``` # n, m = input(Int32, Int64) # => {5, 5i64} # input(String, Char[m]) # => {"foo", ['b', 'a', 'r']} # input(Int32[n]) # => [1, 2, 3, 4, 5] # ``` # ``` # n, m = input(i, i64) # => {5, 5i64} # input(s, c[m]) # => {"foo", ['b', 'a', 'r']} # input(i[n]) # => [1, 2, 3, 4, 5] # ``` # # Input: # ```plain # 2 3 # 1 2 3 # 4 5 6 # ``` # # ``` # h, w = input(i, i) # => {2, 3} # input(i[h, w]) # => [[1, 2, 3], [4, 5, 6]] # ``` # ``` # input(i[i, i]) # => [[1, 2, 3], [4, 5, 6]] # ``` # # Input: # ```plain # 5 3 # 3 1 4 2 5 # 1 2 # 2 3 # 3 1 # ``` # ``` # n, m = input(i, i) # => {5, 3} # input(i.pred[n]) # => [2, 0, 3, 1, 4] # input({i - 1, i - 1}[m]) # => [{0, 1}, {1, 2}, {2, 0}] # ``` # # Input: # ```plain # 3 # 1 2 # 2 2 # 3 2 # ``` # ``` # input({tmp = i, tmp == 1 ? i : i.pred}[i]) # => [{1, 2}, {2, 1}, {3, 1}] # ``` # # Input: # ```plain # 3 # 1 1 # 2 1 2 # 5 1 2 3 4 5 # ``` # ``` # n = input(i) # => 3 # input(i[i][n]) # => [[1], [1, 2], [1, 2, 3, 4, 5]] # ``` # # Input: # ```plain # 3 # 1 2 # 2 3 # 3 1 # ``` # ``` # n = input(i) # input_column({Int32, Int32}, n) # => {[1, 2, 3], [2, 3, 1]} # ``` macro input(ast, *, io = STDIN) {% if ast.is_a?(Call) %} {% if ast.receiver.is_a?(Nop) %} internal_input( {{ast.name}}, {{ast.name}}({% for argument in ast.args %} input({{argument}}, io: {{io}}), {% end %}), {{io}}, ) {% elsif ast.receiver.is_a?(Path) && ast.receiver.resolve.class.has_method?(ast.name.symbolize) %} {{ast.receiver}}.{{ast.name}}( {% for argument in ast.args %} input({{argument}}, io: {{io}}) {% end %} ) {{ast.block}} {% elsif ast.name.stringify == "[]" %} internal_input_array({{ast.receiver}}, {{ast.args}}, {{io}}) {% else %} input({{ast.receiver}}, io: {{io}}).{{ast.name}}( {% for argument in ast.args %} input({{argument}}, io: {{io}}), {% end %} ) {{ast.block}} {% end %} {% elsif ast.is_a?(TupleLiteral) %} { {% for i in 0...ast.size %} input({{ast[i]}}, io: {{io}}), {% end %} } {% elsif ast.is_a?(ArrayLiteral) %} [ {% for i in 0...ast.size %} input({{ast[i]}}, io: {{io}}), {% end %} ] {% elsif ast.is_a?(HashLiteral) %} { {% for key, value in ast %} input({{key}}, io: {{io}}) => input({{value}}, io: {{io}}), {% end %} } {% elsif ast.is_a?(NamedTupleLiteral) %} { {% for key, value in ast %} {{key}}: input({{value}}, io: {{io}}), {% end %} } {% elsif ast.is_a?(RangeLiteral) %} Range.new( input({{ast.begin}}, io: {{io}}), input({{ast.end}}, io: {{io}}), {{ast.excludes_end?}}, ) {% elsif ast.is_a?(SymbolLiteral) %} {{ast.id}} {% elsif ast.is_a?(Expressions) %} ( {% for exp in ast.expressions %} input({{exp}}, io: {{io}}); {% end %} ) {% elsif ast.is_a?(If) %} input({{ast.cond}}, io: {{io}}) ? input({{ast.then}}, io: {{io}}) : input({{ast.else}}, io: {{io}}) {% elsif ast.is_a?(Assign) %} {{ast.target}} = input({{ast.value}}, io: {{io}}) {% else %} internal_input({{ast}}, {{ast}}, io: {{io}}) {% end %} end macro input(*asts, io = STDIN) { {% for ast in asts %} input({{ast}}, io: {{io}}), {% end %} } end macro input_column(types, size, *, io = STDIN) %size = {{size}} {% for type, i in types %} %array{i} = Array({{type}}).new(%size) {% end %} %size.times do {% for type, i in types %} %array{i} << input({{type}}, io: {{io}}) {% end %} end { {% for type, i in types %} %array{i}, {% end %} } end n, m, s = input(i, i, i) graph = DiGraph.new n, input({i, i, i}[m]) puts graph.dijkstra(s).join('\n') { |d| d || "INF" }