This documentation is automatically generated by online-judge-tools/verification-helper
require "../datastructure/binary_heap" require "../graph" module Graph(Edge, Edge2) # Returns the array of distance of each node from *start* or `nil`. def dijkstra(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end dist end # Returns the array of distance of each node from *start*. def dijkstra!(start : Int) dijkstra(start).map(&.not_nil!) end # Returns the distance of *start* to *goal* or `nil`. def dijkstra(start : Int, goal : Int) raise ArgumentError.new unless 0 <= start < size && 0 <= goal < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop return d if v == goal next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end end # Returns the distance of *start* to *goal*. def dijkstra!(start : Int, goal : Int) dijkstra(start, goal).not_nil! end def dijkstra_with_prev(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero prev = Array(Int32?).new(size, nil) until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist prev[edge.to] = v que << {edge.to, next_dist} end end end {dist, prev} end def dijkstra_with_path(start : Int, goal : Int) dist, prev = dijkstra_with_prev(start) if d = dist[goal] {d, Graph.restore_path(prev, goal)} end end def self.restore_path(prev : Array(Int32?), v : Int) : Array(Int32) v = v.to_i path = [v] while v = prev[v] path << v end path.reverse end end
# require "../datastructure/binary_heap" class BinaryHeap(T) # Creates a new empty heap. def initialize @heap = Array(T).new @compare_proc = nil end # Creates a new empty heap backed by a buffer that is initially *initial_capacity* big (default: `0`). # # ``` # a = BinaryHeap.new(3) # a << 3 << 1 << 2 # a.pop # => 1 # a.pop # => 2 # a.pop # => 3 # ``` def initialize(initial_capacity : Int = 0) @heap = Array(T).new(initial_capacity) @compare_proc = nil end # Creates a new heap from the elements in *enumerable*. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.pop # => 1 # a.pop # => 2 # a.pop # => 3 # ``` def initialize(enumerable : Enumerable(T)) initialize enumerable.each { |x| add(x) } end # Creates a new empty heap with the custom comperator. # # The block must implement a comparison between two elements *a* and *b*, where `a < b` returns `-1`, # `a == b` returns `0`, and `a > b` returns `1`. The comparison operator `#<=>` can be used for this. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.pop # => 1 # b = BinaryHeap.new [3, 1, 2] { |a, b| b <=> a } # b.pop # => 3 # ``` def initialize(initial_capacity : Int = 0, &block : T, T -> Int32?) @heap = Array(T).new(initial_capacity) @compare_proc = block end # :ditto: def initialize(enumerable : Enumerable(T), &block : T, T -> Int32?) initialize &block enumerable.each { |x| add(x) } end include Enumerable(T) include Iterable(T) def_clone # Returns true if both heap have the same elements. def ==(other : BinaryHeap(T)) : Bool return false if size != other.size @heap.sort == other.@heap.sort end # Returns the number of elements in the heap. def size : Int32 @heap.size end # Returns `true` if `self` is empty, `false` otherwise. def empty? : Bool @heap.empty? end # Removes all elements from the heap and returns `self`. def clear : self @heap.clear self end # Returns the lowest value in the `self`. # If the `self` is empty, calls the block and returns its value. def top(&block) @heap.first { yield } end # Returns the lowest value in the `self`. # If the `self` is empty, returns `nil`. def top? : T? top { nil } end # Returns the lowest value in the `self`. # If the `self` is empty, raises `IndexError`. def top : T top { raise IndexError.new } end # Requires `0 <= i < size`, `0 <= j < size`. private def compare(i : Int32, j : Int32) x, y = @heap.unsafe_fetch(i), @heap.unsafe_fetch(j) if @compare_proc v = @compare_proc.not_nil!.call(x, y) raise ArgumentError.new("Comparison of #{x} and #{y} failed") if v.nil? v > 0 else x > y end end # Adds *object* to the heap and returns `self`. def add(object : T) : self @heap << object i = size - 1 parent = i.pred // 2 while i > 0 && compare(parent, i) @heap.swap(parent, i) i, parent = parent, parent.pred // 2 end self end # :ditto: def <<(object : T) : self add(object) end # Removes the lowest value from `self` and returns the removed value. # If the array is empty, the given block is called. def pop(&block) case size when 0 yield when 1 @heap.pop else value = @heap.unsafe_fetch(0) @heap[0] = @heap.pop i = 0 loop do left, right = i * 2 + 1, i * 2 + 2 j = if right < size && compare(i, right) compare(left, right) ? right : left elsif left < size && compare(i, left) left else break end @heap.swap(i, j) i = j end value end end # Like `#pop`, but returns `nil` if `self` is empty. def pop? : T? pop { nil } end # Removes the lowest value from `self` and returns the removed value. # Raises `IndexError` if heap is of 0 size. def pop : T pop { raise IndexError.new } end # Removes the last *n* values from `self` ahd returns the removed values. def pop(n : Int) : Array(T) raise ArgumentError.new unless n >= 0 n = Math.min(n, size) Array.new(n) { pop } end # Yields each element of the heap, and returns `nil`. def each(&) : Nil @heap.each { |elem| yield elem } end # Returns an iterator for each element of the heap. def each @heap.each end # Returns a new array with all elements sorted. # # ``` # a = BinaryHeap.new [3, 1, 2] # a.sort # => [1, 2, 3] # b = BinaryHeap.new [3, 1, 2] { |a, b| b <=> a } # b.sort # => [3, 2, 1] # ``` def sort : Array(T) if @compare_proc @heap.sort { |a, b| @compare_proc.not_nil!.call(a, b) } else @heap.sort end end # Returns the elements as an Array. # # ``` # BinaryHeap{3, 1, 2}.to_a # => [1, 3, 2] # ``` def to_a : Array(T) @heap.dup end # Writes a string representation of the heap to `io`. # # ``` # BinaryHeap{1, 2}.to_s # => "BinaryHeap{1, 2}" # ``` def to_s(io : IO) : Nil io << "BinaryHeap{" # TODO: use join each_with_index do |x, i| io << ", " if i > 0 io << x end io << '}' end # Writes a string representation of the heap to `io`. # # ``` # BinaryHeap{1, 2}.inspect # => "BinaryHeap{1, 2}" # ``` def inspect(io : IO) : Nil to_s(io) end end # require "../graph" # require "./graph/edge" struct WeightedEdge(T) include Comparable(WeightedEdge(T)) property to : Int32, cost : T def initialize(@to, @cost : T) end def <=>(other : WeightedEdge(T)) {cost, to} <=> {other.cost, other.to} end def to_s(io) : Nil io << '(' << to << ", " << cost << ')' end def inspect(io) : Nil io << "->" << to << '(' << cost << ')' end end struct WeightedEdge2(T) include Comparable(WeightedEdge2(T)) property from : Int32, to : Int32, cost : T def initialize(@from, @to, @cost : T) end def initialize(@from, edge : WeightedEdge(T)) @to, @cost = edge.to, edge.cost end def <=>(other : WeightedEdge2(T)) {cost, from, to} <=> {other.cost, other.from, other.to} end def reverse : self WeightedEdge2(T).new(to, from, cost) end def sort : self WeightedEdge2(T).new(*{to, from}.minmax, cost) end def to_s(io) : Nil io << '(' << from << ", " << to << ", " << cost << ')' end def inspect(io) : Nil io << from << "->" << to << '(' << cost << ')' end end struct UnweightedEdge property to : Int32 def initialize(@to) end def initialize(@to, cost) end def cost : Int32 1 end def to_s(io) : Nil io << to end def inspect(io) : Nil io << "->" << to end end struct UnweightedEdge2 property from : Int32, to : Int32 def initialize(@from, @to) end def initialize(@from, @to, cost) end def initialize(@from, edge : UnweightedEdge) @to = edge.to end def cost : Int32 1 end def reverse : self UnweightedEdge2.new(to, from) end def sort : self UnweightedEdge2.new(*{to, from}.minmax) end def to_s(io) : Nil io << '(' << from << ", " << to << ')' end def inspect(io) : Nil io << from << "->" << to end end module Graph(Edge, Edge2) include Enumerable(Edge2) getter graph : Array(Array(Edge)) def initialize(size : Int) @graph = Array(Array(Edge)).new(size) { [] of Edge } end def initialize(size : Int, edges : Enumerable) initialize(size) add_edges(edges) end # Add *edge*. abstract def <<(edge : Edge2) # :ditto: def <<(edge : Tuple) : self self << Edge2.new(*edge) end def add_edges(edges : Enumerable) : self edges.each { |edge| self << edge } self end delegate size, :[], to: @graph # Yields each edge of the graph, ans returns `nil`. def each(&) : Nil (0...size).each do |v| graph[v].each do |edge| yield Edge2.new(v, edge) end end end def each_child(vertex : Int, parent, &block) : Nil graph[vertex].each do |edge| yield edge if edge.to != parent end end def each_child(vertex : Int, parent) graph[vertex].each.reject(&.to.== parent) end def reverse : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, reversed| reversed << edge.reverse end else dup end end def to_undirected : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, graph| graph << edge << edge.reverse end else dup end end def to_s(io : IO) : Nil io << '[' join(", ", io) do |edge, io| edge.inspect io end io << ']' end def inspect(io : IO) : Nil io << "[\n" graph.each do |edges| io << " " << edges << ",\n" end io << ']' end end class DiGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) self end end class UnGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) @graph[edge.to] << WeightedEdge.new(edge.from, edge.cost) self end end class UnweightedDiGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) self end end class UnweightedUnGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) @graph[edge.to] << UnweightedEdge.new(edge.from) self end end module Graph(Edge, Edge2) # Returns the array of distance of each node from *start* or `nil`. def dijkstra(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end dist end # Returns the array of distance of each node from *start*. def dijkstra!(start : Int) dijkstra(start).map(&.not_nil!) end # Returns the distance of *start* to *goal* or `nil`. def dijkstra(start : Int, goal : Int) raise ArgumentError.new unless 0 <= start < size && 0 <= goal < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero until que.empty? v, d = que.pop return d if v == goal next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist que << {edge.to, next_dist} end end end end # Returns the distance of *start* to *goal*. def dijkstra!(start : Int, goal : Int) dijkstra(start, goal).not_nil! end def dijkstra_with_prev(start : Int) raise ArgumentError.new unless 0 <= start < size que = BinaryHeap({Int32, typeof(first.cost)}).new { |(v1, d1), (v2, d2)| d1 <=> d2 } que << {start, typeof(first.cost).zero} dist = Array(typeof(first.cost)?).new(size, nil) dist[start] = typeof(first.cost).zero prev = Array(Int32?).new(size, nil) until que.empty? v, d = que.pop next if dist[v].try { |dist_v| dist_v < d } current_dist = dist[v].not_nil! graph[v].each do |edge| next_dist = current_dist + edge.cost if dist[edge.to].nil? || dist[edge.to].not_nil! > next_dist dist[edge.to] = next_dist prev[edge.to] = v que << {edge.to, next_dist} end end end {dist, prev} end def dijkstra_with_path(start : Int, goal : Int) dist, prev = dijkstra_with_prev(start) if d = dist[goal] {d, Graph.restore_path(prev, goal)} end end def self.restore_path(prev : Array(Int32?), v : Int) : Array(Int32) v = v.to_i path = [v] while v = prev[v] path << v end path.reverse end end