This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/VPC/Rupc/2667?year=2015"
#include "./../Graph/HeavyLightDecomposition.cpp"
#include "./../DataStructure/LazySegmentTree.cpp"
#include <iostream>
using namespace std;
using ll = long long;
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
int n, q;
cin >> n >> q;
HLD g(n);
for (int i = 0; i < n - 1; ++i) {
int a, b;
cin >> a >> b;
g.add_edge(a, b);
}
g.build(0);
RangeAddRangeSum<ll, ll> seg(vector<S_sum<ll>>(n, 0));
while (q--) {
int com;
cin >> com;
if (com == 0) {
int u, v;
cin >> u >> v;
ll ans = 0;
g.each_edge(u, v, [&](int l, int r) { ans += seg.prod(l, r).value; });
cout << ans << '\n';
} else {
int v;
ll x;
cin >> v >> x;
g.each_subtree_edge(v, [&](int l, int r) { seg.apply(l, r, x); });
}
}
}
#line 1 "test/HLD_subtree_edge.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/challenges/sources/VPC/Rupc/2667?year=2015"
#line 2 "Graph/HeavyLightDecomposition.cpp"
#include <vector>
#include <cassert>
class HLD {
int n;
std::vector<std::vector<int>> graph;
std::vector<int> parent, size;
int k;
std::vector<int> head, hld, index, out_index;
bool builded = false;
int calc_size(int v, int p, int d) {
parent[v] = p;
size[v] = 1;
for (int u : graph[v]) {
if (u != p) {
size[v] += calc_size(u, v, d + 1);
}
}
return size[v];
}
void rec(int v, int p, int root) {
head[v] = root;
index[v] = k;
hld[k++] = v;
int heavy_vertex = -1, max_size = 0;
for (int u : graph[v]) {
if (u != p && max_size < size[u]) {
max_size = size[u];
heavy_vertex = u;
}
}
if (heavy_vertex != -1) {
rec(heavy_vertex, v, root);
for (int u : graph[v]) {
if (u != heavy_vertex && u != p) {
rec(u, v, u);
}
}
}
out_index[v] = k;
}
public:
HLD(int _n) : n(_n), graph(_n) {}
HLD(const std::vector<std::vector<int>>& _graph) : n(_graph.size()), graph(_graph) {}
void add_edge(int u, int v) {
graph[u].push_back(v);
graph[v].push_back(u);
builded = false;
}
void build(int root) {
parent.assign(n, -1);
size.assign(n, 0);
calc_size(root, -1, 1);
k = 0;
head.assign(n, 0);
hld.assign(n, 0);
index.assign(n, 0);
out_index.assign(n, 0);
rec(root, -1, root);
builded = true;
}
const std::vector<std::vector<int>>& get_graph() const {
assert(builded);
return graph;
}
const std::vector<int>& get_parent() const {
assert(builded);
return parent;
}
const std::vector<int>& get_size() const {
assert(builded);
return size;
}
const std::vector<int>& get_head() const {
assert(builded);
return head;
}
const std::vector<int>& get_hld() const {
assert(builded);
return hld;
}
const std::vector<int>& get_index() const {
assert(builded);
return index;
}
const std::vector<int>& get_out_index() const {
assert(builded);
return out_index;
}
int operator[](int v) const {
assert(builded);
return index[v];
}
template <class F> void each_vertex(int v, int u, F f) const {
assert(builded);
while (true) {
if (index[v] > index[u]) std::swap(v, u);
if (head[v] != head[u]) {
f(index[head[u]], index[u] + 1);
u = parent[head[u]];
} else {
f(index[v], index[u] + 1);
break;
}
}
}
template <class F> void each_subtree_vertex(int v, F f) const {
assert(builded);
f(index[v], out_index[v]);
}
template <class F> void each_edge(int v, int u, F f) const {
assert(builded);
while (true) {
if (index[v] > index[u]) std::swap(v, u);
if (head[v] != head[u]) {
f(index[head[u]], index[u] + 1);
u = parent[head[u]];
} else {
if (v != u) f(index[v] + 1, index[u] + 1);
break;
}
}
}
template <class F> void each_subtree_edge(int v, F f) const {
assert(builded);
f(index[v] + 1, out_index[v]);
}
std::vector<std::pair<int, int>> query_vertex(int u, int v) const {
assert(builded);
std::vector<std::pair<int, int>> result;
each_vertex(u, v, [&](int a, int b) { result.emplace_back(a, b); });
return result;
}
std::pair<int, int> query_subtree_vertex(int v) const {
assert(builded);
std::pair<int, int> result;
each_subtree_vertex(v, [&](int a, int b) { result = {a, b}; });
return result;
}
std::vector<std::pair<int, int>> query_edge(int u, int v) const {
assert(builded);
std::vector<std::pair<int, int>> result;
each_edge(u, v, [&](int a, int b) { result.emplace_back(a, b); });
return result;
}
std::pair<int, int> query_subtree_edge(int v) const {
assert(builded);
std::pair<int, int> result;
each_subtree_edge(v, [&](int a, int b) { result = {a, b}; });
return result;
}
int lca(int u, int v) const {
while (true) {
if (index[u] > index[v]) std::swap(u, v);
if (head[u] != head[v]) {
v = parent[head[v]];
} else {
return u;
}
}
}
};
#line 1 "atcoder/lazysegtree.hpp"
#line 1 "atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n))
x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 5 "atcoder/lazysegtree.hpp"
#include <algorithm>
#line 7 "atcoder/lazysegtree.hpp"
#include <iostream>
#line 9 "atcoder/lazysegtree.hpp"
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S operator[](int p) {
return get(p);
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S operator()(int l, int r) {
return prod(l, r);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
std::vector<S> to_a() {
std::vector<S> res(_n);
for (int i = 0; i < _n; ++i) {
res[i] = get(i);
}
return res;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#line 4 "DataStructure/LazySegmentTree.cpp"
#include <limits>
namespace internal {
template <class T> struct S_sum {
T value, size;
S_sum(T v, T s = 1) : value(v), size(s) {}
};
template <class S> constexpr S constant_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S constant_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S constant_zero() {
return static_cast<S>(0);
}
template <class T> constexpr S_sum<T> constant_zero_sum() {
return {0, 0};
}
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class T> constexpr S_sum<T> op_sum(S_sum<T> x, S_sum<T> y) {
return {x.value + y.value, x.size + y.size};
}
template <class S, class F> constexpr S mapping_add(F f, S x) {
return f + x;
}
template <class T, class F> constexpr S_sum<T> mapping_add_sum(F f, S_sum<T> x) {
return {x.value + f * x.size, x.size};
}
template <class S, class F> constexpr S mapping_update(F f, S x) {
return f == constant_max<F>() ? x : f;
}
template <class T, class F> constexpr S_sum<T> mapping_update_sum(F f, S_sum<T> x) {
if (f != constant_max<F>()) x.value = f * x.size;
return x;
}
template <class F> constexpr F composition_add(F f, F g) {
return f + g;
}
template <class F> constexpr F composition_update(F f, F g) {
return f == constant_max<F>() ? g : f;
}
} // namespace internal
using internal::S_sum;
template <class S, class F>
using RangeAddRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class S, class F>
using RangeAddRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class T, class F>
using RangeAddRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F, internal::mapping_add_sum<T, F>,
internal::composition_add<F>, internal::constant_zero<F>>;
template <class S, class F>
using RangeUpdateRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class S, class F>
using RangeUpdateRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class T, class F>
using RangeUpdateRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F,
internal::mapping_update_sum<T, F>, internal::composition_update<F>,
internal::constant_max<F>>;
#line 5 "test/HLD_subtree_edge.test.cpp"
using namespace std;
using ll = long long;
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
int n, q;
cin >> n >> q;
HLD g(n);
for (int i = 0; i < n - 1; ++i) {
int a, b;
cin >> a >> b;
g.add_edge(a, b);
}
g.build(0);
RangeAddRangeSum<ll, ll> seg(vector<S_sum<ll>>(n, 0));
while (q--) {
int com;
cin >> com;
if (com == 0) {
int u, v;
cin >> u >> v;
ll ans = 0;
g.each_edge(u, v, [&](int l, int r) { ans += seg.prod(l, r).value; });
cout << ans << '\n';
} else {
int v;
ll x;
cin >> v >> x;
g.each_subtree_edge(v, [&](int l, int r) { seg.apply(l, r, x); });
}
}
}