This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "./../atcoder/lazysegtree.hpp"
#include <algorithm>
#include <limits>
namespace internal {
template <class T> struct S_sum {
T value, size;
S_sum(T v, T s = 1) : value(v), size(s) {}
};
template <class S> constexpr S constant_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S constant_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S constant_zero() {
return static_cast<S>(0);
}
template <class T> constexpr S_sum<T> constant_zero_sum() {
return {0, 0};
}
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class T> constexpr S_sum<T> op_sum(S_sum<T> x, S_sum<T> y) {
return {x.value + y.value, x.size + y.size};
}
template <class S, class F> constexpr S mapping_add(F f, S x) {
return f + x;
}
template <class T, class F> constexpr S_sum<T> mapping_add_sum(F f, S_sum<T> x) {
return {x.value + f * x.size, x.size};
}
template <class S, class F> constexpr S mapping_update(F f, S x) {
return f == constant_max<F>() ? x : f;
}
template <class T, class F> constexpr S_sum<T> mapping_update_sum(F f, S_sum<T> x) {
if (f != constant_max<F>()) x.value = f * x.size;
return x;
}
template <class F> constexpr F composition_add(F f, F g) {
return f + g;
}
template <class F> constexpr F composition_update(F f, F g) {
return f == constant_max<F>() ? g : f;
}
} // namespace internal
using internal::S_sum;
template <class S, class F>
using RangeAddRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class S, class F>
using RangeAddRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class T, class F>
using RangeAddRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F, internal::mapping_add_sum<T, F>,
internal::composition_add<F>, internal::constant_zero<F>>;
template <class S, class F>
using RangeUpdateRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class S, class F>
using RangeUpdateRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class T, class F>
using RangeUpdateRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F,
internal::mapping_update_sum<T, F>, internal::composition_update<F>,
internal::constant_max<F>>;
#line 1 "atcoder/lazysegtree.hpp"
#line 1 "atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n))
x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 5 "atcoder/lazysegtree.hpp"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S operator[](int p) {
return get(p);
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push(r >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S operator()(int l, int r) {
return prod(l, r);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
std::vector<S> to_a() {
std::vector<S> res(_n);
for (int i = 0; i < _n; ++i) {
res[i] = get(i);
}
return res;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#line 4 "DataStructure/LazySegmentTree.cpp"
#include <limits>
namespace internal {
template <class T> struct S_sum {
T value, size;
S_sum(T v, T s = 1) : value(v), size(s) {}
};
template <class S> constexpr S constant_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S constant_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S constant_zero() {
return static_cast<S>(0);
}
template <class T> constexpr S_sum<T> constant_zero_sum() {
return {0, 0};
}
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class T> constexpr S_sum<T> op_sum(S_sum<T> x, S_sum<T> y) {
return {x.value + y.value, x.size + y.size};
}
template <class S, class F> constexpr S mapping_add(F f, S x) {
return f + x;
}
template <class T, class F> constexpr S_sum<T> mapping_add_sum(F f, S_sum<T> x) {
return {x.value + f * x.size, x.size};
}
template <class S, class F> constexpr S mapping_update(F f, S x) {
return f == constant_max<F>() ? x : f;
}
template <class T, class F> constexpr S_sum<T> mapping_update_sum(F f, S_sum<T> x) {
if (f != constant_max<F>()) x.value = f * x.size;
return x;
}
template <class F> constexpr F composition_add(F f, F g) {
return f + g;
}
template <class F> constexpr F composition_update(F f, F g) {
return f == constant_max<F>() ? g : f;
}
} // namespace internal
using internal::S_sum;
template <class S, class F>
using RangeAddRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class S, class F>
using RangeAddRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_add<S, F>, internal::composition_add<F>,
internal::constant_zero<F>>;
template <class T, class F>
using RangeAddRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F, internal::mapping_add_sum<T, F>,
internal::composition_add<F>, internal::constant_zero<F>>;
template <class S, class F>
using RangeUpdateRangeMax =
atcoder::lazy_segtree<S, internal::op_max<S>, internal::constant_min<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class S, class F>
using RangeUpdateRangeMin =
atcoder::lazy_segtree<S, internal::op_min<S>, internal::constant_max<S>, F,
internal::mapping_update<S, F>, internal::composition_update<F>,
internal::constant_max<F>>;
template <class T, class F>
using RangeUpdateRangeSum =
atcoder::lazy_segtree<internal::S_sum<T>, internal::op_sum<T>,
internal::constant_zero_sum<T>, F,
internal::mapping_update_sum<T, F>, internal::composition_update<F>,
internal::constant_max<F>>;