library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub yuruhi/library

:warning: atcoder/internal_math.hpp

Required by

Code

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1

#include <utility>

namespace atcoder {

	namespace internal {

		// @param m `1 <= m`
		// @return x mod m
		constexpr long long safe_mod(long long x, long long m) {
			x %= m;
			if (x < 0) x += m;
			return x;
		}

		// Fast moduler by barrett reduction
		// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
		// NOTE: reconsider after Ice Lake
		struct barrett {
			unsigned int _m;
			unsigned long long im;

			// @param m `1 <= m`
			barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

			// @return m
			unsigned int umod() const {
				return _m;
			}

			// @param a `0 <= a < m`
			// @param b `0 <= b < m`
			// @return `a * b % m`
			unsigned int mul(unsigned int a, unsigned int b) const {
				// [1] m = 1
				// a = b = im = 0, so okay

				// [2] m >= 2
				// im = ceil(2^64 / m)
				// -> im * m = 2^64 + r (0 <= r < m)
				// let z = a*b = c*m + d (0 <= c, d < m)
				// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
				// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
				// ((ab * im) >> 64) == c or c + 1
				unsigned long long z = a;
				z *= b;
#ifdef _MSC_VER
				unsigned long long x;
				_umul128(z, im, &x);
#else
				unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
				unsigned int v = (unsigned int)(z - x * _m);
				if (_m <= v) v += _m;
				return v;
			}
		};

		// @param n `0 <= n`
		// @param m `1 <= m`
		// @return `(x ** n) % m`
		constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
			if (m == 1) return 0;
			unsigned int _m = (unsigned int)(m);
			unsigned long long r = 1;
			unsigned long long y = safe_mod(x, m);
			while (n) {
				if (n & 1) r = (r * y) % _m;
				y = (y * y) % _m;
				n >>= 1;
			}
			return r;
		}

		// Reference:
		// M. Forisek and J. Jancina,
		// Fast Primality Testing for Integers That Fit into a Machine Word
		// @param n `0 <= n`
		constexpr bool is_prime_constexpr(int n) {
			if (n <= 1) return false;
			if (n == 2 || n == 7 || n == 61) return true;
			if (n % 2 == 0) return false;
			long long d = n - 1;
			while (d % 2 == 0)
				d /= 2;
			for (long long a : {2, 7, 61}) {
				long long t = d;
				long long y = pow_mod_constexpr(a, t, n);
				while (t != n - 1 && y != 1 && y != n - 1) {
					y = y * y % n;
					t <<= 1;
				}
				if (y != n - 1 && t % 2 == 0) {
					return false;
				}
			}
			return true;
		}
		template <int n> constexpr bool is_prime = is_prime_constexpr(n);

		// @param b `1 <= b`
		// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
		constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
			a = safe_mod(a, b);
			if (a == 0) return {b, 0};

			// Contracts:
			// [1] s - m0 * a = 0 (mod b)
			// [2] t - m1 * a = 0 (mod b)
			// [3] s * |m1| + t * |m0| <= b
			long long s = b, t = a;
			long long m0 = 0, m1 = 1;

			while (t) {
				long long u = s / t;
				s -= t * u;
				m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

				// [3]:
				// (s - t * u) * |m1| + t * |m0 - m1 * u|
				// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
				// = s * |m1| + t * |m0| <= b

				auto tmp = s;
				s = t;
				t = tmp;
				tmp = m0;
				m0 = m1;
				m1 = tmp;
			}
			// by [3]: |m0| <= b/g
			// by g != b: |m0| < b/g
			if (m0 < 0) m0 += b / s;
			return {s, m0};
		}

		// Compile time primitive root
		// @param m must be prime
		// @return primitive root (and minimum in now)
		constexpr int primitive_root_constexpr(int m) {
			if (m == 2) return 1;
			if (m == 167772161) return 3;
			if (m == 469762049) return 3;
			if (m == 754974721) return 11;
			if (m == 998244353) return 3;
			int divs[20] = {};
			divs[0] = 2;
			int cnt = 1;
			int x = (m - 1) / 2;
			while (x % 2 == 0)
				x /= 2;
			for (int i = 3; (long long)(i)*i <= x; i += 2) {
				if (x % i == 0) {
					divs[cnt++] = i;
					while (x % i == 0) {
						x /= i;
					}
				}
			}
			if (x > 1) {
				divs[cnt++] = x;
			}
			for (int g = 2;; g++) {
				bool ok = true;
				for (int i = 0; i < cnt; i++) {
					if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
						ok = false;
						break;
					}
				}
				if (ok) return g;
			}
		}
		template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

	}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_MATH_HPP
#line 1 "atcoder/internal_math.hpp"



#include <utility>

namespace atcoder {

	namespace internal {

		// @param m `1 <= m`
		// @return x mod m
		constexpr long long safe_mod(long long x, long long m) {
			x %= m;
			if (x < 0) x += m;
			return x;
		}

		// Fast moduler by barrett reduction
		// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
		// NOTE: reconsider after Ice Lake
		struct barrett {
			unsigned int _m;
			unsigned long long im;

			// @param m `1 <= m`
			barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

			// @return m
			unsigned int umod() const {
				return _m;
			}

			// @param a `0 <= a < m`
			// @param b `0 <= b < m`
			// @return `a * b % m`
			unsigned int mul(unsigned int a, unsigned int b) const {
				// [1] m = 1
				// a = b = im = 0, so okay

				// [2] m >= 2
				// im = ceil(2^64 / m)
				// -> im * m = 2^64 + r (0 <= r < m)
				// let z = a*b = c*m + d (0 <= c, d < m)
				// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
				// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
				// ((ab * im) >> 64) == c or c + 1
				unsigned long long z = a;
				z *= b;
#ifdef _MSC_VER
				unsigned long long x;
				_umul128(z, im, &x);
#else
				unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
				unsigned int v = (unsigned int)(z - x * _m);
				if (_m <= v) v += _m;
				return v;
			}
		};

		// @param n `0 <= n`
		// @param m `1 <= m`
		// @return `(x ** n) % m`
		constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
			if (m == 1) return 0;
			unsigned int _m = (unsigned int)(m);
			unsigned long long r = 1;
			unsigned long long y = safe_mod(x, m);
			while (n) {
				if (n & 1) r = (r * y) % _m;
				y = (y * y) % _m;
				n >>= 1;
			}
			return r;
		}

		// Reference:
		// M. Forisek and J. Jancina,
		// Fast Primality Testing for Integers That Fit into a Machine Word
		// @param n `0 <= n`
		constexpr bool is_prime_constexpr(int n) {
			if (n <= 1) return false;
			if (n == 2 || n == 7 || n == 61) return true;
			if (n % 2 == 0) return false;
			long long d = n - 1;
			while (d % 2 == 0)
				d /= 2;
			for (long long a : {2, 7, 61}) {
				long long t = d;
				long long y = pow_mod_constexpr(a, t, n);
				while (t != n - 1 && y != 1 && y != n - 1) {
					y = y * y % n;
					t <<= 1;
				}
				if (y != n - 1 && t % 2 == 0) {
					return false;
				}
			}
			return true;
		}
		template <int n> constexpr bool is_prime = is_prime_constexpr(n);

		// @param b `1 <= b`
		// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
		constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
			a = safe_mod(a, b);
			if (a == 0) return {b, 0};

			// Contracts:
			// [1] s - m0 * a = 0 (mod b)
			// [2] t - m1 * a = 0 (mod b)
			// [3] s * |m1| + t * |m0| <= b
			long long s = b, t = a;
			long long m0 = 0, m1 = 1;

			while (t) {
				long long u = s / t;
				s -= t * u;
				m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

				// [3]:
				// (s - t * u) * |m1| + t * |m0 - m1 * u|
				// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
				// = s * |m1| + t * |m0| <= b

				auto tmp = s;
				s = t;
				t = tmp;
				tmp = m0;
				m0 = m1;
				m1 = tmp;
			}
			// by [3]: |m0| <= b/g
			// by g != b: |m0| < b/g
			if (m0 < 0) m0 += b / s;
			return {s, m0};
		}

		// Compile time primitive root
		// @param m must be prime
		// @return primitive root (and minimum in now)
		constexpr int primitive_root_constexpr(int m) {
			if (m == 2) return 1;
			if (m == 167772161) return 3;
			if (m == 469762049) return 3;
			if (m == 754974721) return 11;
			if (m == 998244353) return 3;
			int divs[20] = {};
			divs[0] = 2;
			int cnt = 1;
			int x = (m - 1) / 2;
			while (x % 2 == 0)
				x /= 2;
			for (int i = 3; (long long)(i)*i <= x; i += 2) {
				if (x % i == 0) {
					divs[cnt++] = i;
					while (x % i == 0) {
						x /= i;
					}
				}
			}
			if (x > 1) {
				divs[cnt++] = x;
			}
			for (int g = 2;; g++) {
				bool ok = true;
				for (int i = 0; i < cnt; i++) {
					if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
						ok = false;
						break;
					}
				}
				if (ok) return g;
			}
		}
		template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

	}  // namespace internal

}  // namespace atcoder
Back to top page