library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub yuruhi/library

:warning: atcoder/convolution.hpp

Depends on

Code

#ifndef ATCODER_CONVOLUTION_HPP
#define ATCODER_CONVOLUTION_HPP 1

#include <algorithm>
#include <array>
#include "./internal_bit.hpp"
#include "./modint.hpp"
#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

	namespace internal {

		template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) {
			static constexpr int g = internal::primitive_root<mint::mod()>;
			int n = int(a.size());
			int h = internal::ceil_pow2(n);

			static bool first = true;
			static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
			if (first) {
				first = false;
				mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
				int cnt2 = bsf(mint::mod() - 1);
				mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
				for (int i = cnt2; i >= 2; i--) {
					// e^(2^i) == 1
					es[i - 2] = e;
					ies[i - 2] = ie;
					e *= e;
					ie *= ie;
				}
				mint now = 1;
				for (int i = 0; i < cnt2 - 2; i++) {
					sum_e[i] = es[i] * now;
					now *= ies[i];
				}
			}
			for (int ph = 1; ph <= h; ph++) {
				int w = 1 << (ph - 1), p = 1 << (h - ph);
				mint now = 1;
				for (int s = 0; s < w; s++) {
					int offset = s << (h - ph + 1);
					for (int i = 0; i < p; i++) {
						auto l = a[i + offset];
						auto r = a[i + offset + p] * now;
						a[i + offset] = l + r;
						a[i + offset + p] = l - r;
					}
					now *= sum_e[bsf(~(unsigned int)(s))];
				}
			}
		}

		template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) {
			static constexpr int g = internal::primitive_root<mint::mod()>;
			int n = int(a.size());
			int h = internal::ceil_pow2(n);

			static bool first = true;
			static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
			if (first) {
				first = false;
				mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
				int cnt2 = bsf(mint::mod() - 1);
				mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
				for (int i = cnt2; i >= 2; i--) {
					// e^(2^i) == 1
					es[i - 2] = e;
					ies[i - 2] = ie;
					e *= e;
					ie *= ie;
				}
				mint now = 1;
				for (int i = 0; i < cnt2 - 2; i++) {
					sum_ie[i] = ies[i] * now;
					now *= es[i];
				}
			}

			for (int ph = h; ph >= 1; ph--) {
				int w = 1 << (ph - 1), p = 1 << (h - ph);
				mint inow = 1;
				for (int s = 0; s < w; s++) {
					int offset = s << (h - ph + 1);
					for (int i = 0; i < p; i++) {
						auto l = a[i + offset];
						auto r = a[i + offset + p];
						a[i + offset] = l + r;
						a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
					}
					inow *= sum_ie[bsf(~(unsigned int)(s))];
				}
			}
		}

	}  // namespace internal

	template <class mint, internal::is_static_modint_t<mint>* = nullptr>
	std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};
		if (std::min(n, m) <= 60) {
			if (n < m) {
				std::swap(n, m);
				std::swap(a, b);
			}
			std::vector<mint> ans(n + m - 1);
			for (int i = 0; i < n; i++) {
				for (int j = 0; j < m; j++) {
					ans[i + j] += a[i] * b[j];
				}
			}
			return ans;
		}
		int z = 1 << internal::ceil_pow2(n + m - 1);
		a.resize(z);
		internal::butterfly(a);
		b.resize(z);
		internal::butterfly(b);
		for (int i = 0; i < z; i++) {
			a[i] *= b[i];
		}
		internal::butterfly_inv(a);
		a.resize(n + m - 1);
		mint iz = mint(z).inv();
		for (int i = 0; i < n + m - 1; i++)
			a[i] *= iz;
		return a;
	}

	template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
	std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};

		using mint = static_modint<mod>;
		std::vector<mint> a2(n), b2(m);
		for (int i = 0; i < n; i++) {
			a2[i] = mint(a[i]);
		}
		for (int i = 0; i < m; i++) {
			b2[i] = mint(b[i]);
		}
		auto c2 = convolution(move(a2), move(b2));
		std::vector<T> c(n + m - 1);
		for (int i = 0; i < n + m - 1; i++) {
			c[i] = c2[i].val();
		}
		return c;
	}

	std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};

		static constexpr unsigned long long MOD1 = 754974721;  // 2^24
		static constexpr unsigned long long MOD2 = 167772161;  // 2^25
		static constexpr unsigned long long MOD3 = 469762049;  // 2^26
		static constexpr unsigned long long M2M3 = MOD2 * MOD3;
		static constexpr unsigned long long M1M3 = MOD1 * MOD3;
		static constexpr unsigned long long M1M2 = MOD1 * MOD2;
		static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

		static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second;
		static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second;
		static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second;

		auto c1 = convolution<MOD1>(a, b);
		auto c2 = convolution<MOD2>(a, b);
		auto c3 = convolution<MOD3>(a, b);

		std::vector<long long> c(n + m - 1);
		for (int i = 0; i < n + m - 1; i++) {
			unsigned long long x = 0;
			x += (c1[i] * i1) % MOD1 * M2M3;
			x += (c2[i] * i2) % MOD2 * M1M3;
			x += (c3[i] * i3) % MOD3 * M1M2;
			// B = 2^63, -B <= x, r(real value) < B
			// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
			// r = c1[i] (mod MOD1)
			// focus on MOD1
			// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
			// r = x,
			//     x - M' + (0 or 2B),
			//     x - 2M' + (0, 2B or 4B),
			//     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
			// (r - x) = 0, (0)
			//           - M' + (0 or 2B), (1)
			//           -2M' + (0 or 2B or 4B), (2)
			//           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
			// we checked that
			//   ((1) mod MOD1) mod 5 = 2
			//   ((2) mod MOD1) mod 5 = 3
			//   ((3) mod MOD1) mod 5 = 4
			long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
			if (diff < 0) diff += MOD1;
			static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
			x -= offset[diff % 5];
			c[i] = x;
		}

		return c;
	}

}  // namespace atcoder

#endif  // ATCODER_CONVOLUTION_HPP
#line 1 "atcoder/convolution.hpp"



#include <algorithm>
#include <array>
#line 1 "atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

	namespace internal {

		// @param n `0 <= n`
		// @return minimum non-negative `x` s.t. `n <= 2**x`
		int ceil_pow2(int n) {
			int x = 0;
			while ((1U << x) < (unsigned int)(n))
				x++;
			return x;
		}

		// @param n `1 <= n`
		// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
		int bsf(unsigned int n) {
#ifdef _MSC_VER
			unsigned long index;
			_BitScanForward(&index, n);
			return index;
#else
			return __builtin_ctz(n);
#endif
		}

	}  // namespace internal

}  // namespace atcoder


#line 1 "atcoder/modint.hpp"



#line 1 "atcoder/internal_math.hpp"



#include <utility>

namespace atcoder {

	namespace internal {

		// @param m `1 <= m`
		// @return x mod m
		constexpr long long safe_mod(long long x, long long m) {
			x %= m;
			if (x < 0) x += m;
			return x;
		}

		// Fast moduler by barrett reduction
		// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
		// NOTE: reconsider after Ice Lake
		struct barrett {
			unsigned int _m;
			unsigned long long im;

			// @param m `1 <= m`
			barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

			// @return m
			unsigned int umod() const {
				return _m;
			}

			// @param a `0 <= a < m`
			// @param b `0 <= b < m`
			// @return `a * b % m`
			unsigned int mul(unsigned int a, unsigned int b) const {
				// [1] m = 1
				// a = b = im = 0, so okay

				// [2] m >= 2
				// im = ceil(2^64 / m)
				// -> im * m = 2^64 + r (0 <= r < m)
				// let z = a*b = c*m + d (0 <= c, d < m)
				// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
				// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
				// ((ab * im) >> 64) == c or c + 1
				unsigned long long z = a;
				z *= b;
#ifdef _MSC_VER
				unsigned long long x;
				_umul128(z, im, &x);
#else
				unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
				unsigned int v = (unsigned int)(z - x * _m);
				if (_m <= v) v += _m;
				return v;
			}
		};

		// @param n `0 <= n`
		// @param m `1 <= m`
		// @return `(x ** n) % m`
		constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
			if (m == 1) return 0;
			unsigned int _m = (unsigned int)(m);
			unsigned long long r = 1;
			unsigned long long y = safe_mod(x, m);
			while (n) {
				if (n & 1) r = (r * y) % _m;
				y = (y * y) % _m;
				n >>= 1;
			}
			return r;
		}

		// Reference:
		// M. Forisek and J. Jancina,
		// Fast Primality Testing for Integers That Fit into a Machine Word
		// @param n `0 <= n`
		constexpr bool is_prime_constexpr(int n) {
			if (n <= 1) return false;
			if (n == 2 || n == 7 || n == 61) return true;
			if (n % 2 == 0) return false;
			long long d = n - 1;
			while (d % 2 == 0)
				d /= 2;
			for (long long a : {2, 7, 61}) {
				long long t = d;
				long long y = pow_mod_constexpr(a, t, n);
				while (t != n - 1 && y != 1 && y != n - 1) {
					y = y * y % n;
					t <<= 1;
				}
				if (y != n - 1 && t % 2 == 0) {
					return false;
				}
			}
			return true;
		}
		template <int n> constexpr bool is_prime = is_prime_constexpr(n);

		// @param b `1 <= b`
		// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
		constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
			a = safe_mod(a, b);
			if (a == 0) return {b, 0};

			// Contracts:
			// [1] s - m0 * a = 0 (mod b)
			// [2] t - m1 * a = 0 (mod b)
			// [3] s * |m1| + t * |m0| <= b
			long long s = b, t = a;
			long long m0 = 0, m1 = 1;

			while (t) {
				long long u = s / t;
				s -= t * u;
				m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

				// [3]:
				// (s - t * u) * |m1| + t * |m0 - m1 * u|
				// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
				// = s * |m1| + t * |m0| <= b

				auto tmp = s;
				s = t;
				t = tmp;
				tmp = m0;
				m0 = m1;
				m1 = tmp;
			}
			// by [3]: |m0| <= b/g
			// by g != b: |m0| < b/g
			if (m0 < 0) m0 += b / s;
			return {s, m0};
		}

		// Compile time primitive root
		// @param m must be prime
		// @return primitive root (and minimum in now)
		constexpr int primitive_root_constexpr(int m) {
			if (m == 2) return 1;
			if (m == 167772161) return 3;
			if (m == 469762049) return 3;
			if (m == 754974721) return 11;
			if (m == 998244353) return 3;
			int divs[20] = {};
			divs[0] = 2;
			int cnt = 1;
			int x = (m - 1) / 2;
			while (x % 2 == 0)
				x /= 2;
			for (int i = 3; (long long)(i)*i <= x; i += 2) {
				if (x % i == 0) {
					divs[cnt++] = i;
					while (x % i == 0) {
						x /= i;
					}
				}
			}
			if (x > 1) {
				divs[cnt++] = x;
			}
			for (int g = 2;; g++) {
				bool ok = true;
				for (int i = 0; i < cnt; i++) {
					if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
						ok = false;
						break;
					}
				}
				if (ok) return g;
			}
		}
		template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

	}  // namespace internal

}  // namespace atcoder


#line 1 "atcoder/internal_type_traits.hpp"



#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

	namespace internal {

#ifndef _MSC_VER
		template <class T>
		using is_signed_int128 =
		    typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value,
		                              std::true_type, std::false_type>::type;

		template <class T>
		using is_unsigned_int128 =
		    typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value,
		                              std::true_type, std::false_type>::type;

		template <class T>
		using make_unsigned_int128 =
		    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

		template <class T>
		using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
		                                                  is_unsigned_int128<T>::value,
		                                              std::true_type, std::false_type>::type;

		template <class T>
		using is_signed_int =
		    typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value,
		                              std::true_type, std::false_type>::type;

		template <class T>
		using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
		                                                      is_unsigned_int128<T>::value,
		                                                  std::true_type, std::false_type>::type;

		template <class T>
		using to_unsigned =
		    typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>,
		                              typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
		                                                        std::common_type<T>>::type>::type;

#else

		template <class T> using is_integral = typename std::is_integral<T>;

		template <class T>
		using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
		                                                std::true_type, std::false_type>::type;

		template <class T>
		using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value,
		                                                  std::true_type, std::false_type>::type;

		template <class T>
		using to_unsigned =
		    typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;

#endif

		template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

		template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

		template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

	}  // namespace internal

}  // namespace atcoder


#line 9 "atcoder/modint.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

	namespace internal {

		struct modint_base {};
		struct static_modint_base : modint_base {};

		template <class T> using is_modint = std::is_base_of<modint_base, T>;
		template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

	}  // namespace internal

	template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base {
		using mint = static_modint;

	public:
		static constexpr int mod() {
			return m;
		}
		static mint raw(int v) {
			mint x;
			x._v = v;
			return x;
		}

		static_modint() : _v(0) {}
		template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) {
			long long x = (long long)(v % (long long)(umod()));
			if (x < 0) x += umod();
			_v = (unsigned int)(x);
		}
		template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) {
			_v = (unsigned int)(v % umod());
		}
		static_modint(bool v) {
			_v = ((unsigned int)(v) % umod());
		}

		unsigned int val() const {
			return _v;
		}

		mint& operator++() {
			_v++;
			if (_v == umod()) _v = 0;
			return *this;
		}
		mint& operator--() {
			if (_v == 0) _v = umod();
			_v--;
			return *this;
		}
		mint operator++(int) {
			mint result = *this;
			++*this;
			return result;
		}
		mint operator--(int) {
			mint result = *this;
			--*this;
			return result;
		}

		mint& operator+=(const mint& rhs) {
			_v += rhs._v;
			if (_v >= umod()) _v -= umod();
			return *this;
		}
		mint& operator-=(const mint& rhs) {
			_v -= rhs._v;
			if (_v >= umod()) _v += umod();
			return *this;
		}
		mint& operator*=(const mint& rhs) {
			unsigned long long z = _v;
			z *= rhs._v;
			_v = (unsigned int)(z % umod());
			return *this;
		}
		mint& operator/=(const mint& rhs) {
			return *this = *this * rhs.inv();
		}

		mint operator+() const {
			return *this;
		}
		mint operator-() const {
			return mint() - *this;
		}

		mint pow(long long n) const {
			assert(0 <= n);
			mint x = *this, r = 1;
			while (n) {
				if (n & 1) r *= x;
				x *= x;
				n >>= 1;
			}
			return r;
		}
		mint inv() const {
			if (prime) {
				assert(_v);
				return pow(umod() - 2);
			} else {
				auto eg = internal::inv_gcd(_v, m);
				assert(eg.first == 1);
				return eg.second;
			}
		}

		friend mint operator+(const mint& lhs, const mint& rhs) {
			return mint(lhs) += rhs;
		}
		friend mint operator-(const mint& lhs, const mint& rhs) {
			return mint(lhs) -= rhs;
		}
		friend mint operator*(const mint& lhs, const mint& rhs) {
			return mint(lhs) *= rhs;
		}
		friend mint operator/(const mint& lhs, const mint& rhs) {
			return mint(lhs) /= rhs;
		}
		friend bool operator==(const mint& lhs, const mint& rhs) {
			return lhs._v == rhs._v;
		}
		friend bool operator!=(const mint& lhs, const mint& rhs) {
			return lhs._v != rhs._v;
		}

	private:
		unsigned int _v;
		static constexpr unsigned int umod() {
			return m;
		}
		static constexpr bool prime = internal::is_prime<m>;
	};

	template <int id> struct dynamic_modint : internal::modint_base {
		using mint = dynamic_modint;

	public:
		static int mod() {
			return (int)(bt.umod());
		}
		static void set_mod(int m) {
			assert(1 <= m);
			bt = internal::barrett(m);
		}
		static mint raw(int v) {
			mint x;
			x._v = v;
			return x;
		}

		dynamic_modint() : _v(0) {}
		template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) {
			long long x = (long long)(v % (long long)(mod()));
			if (x < 0) x += mod();
			_v = (unsigned int)(x);
		}
		template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) {
			_v = (unsigned int)(v % mod());
		}
		dynamic_modint(bool v) {
			_v = ((unsigned int)(v) % mod());
		}

		unsigned int val() const {
			return _v;
		}

		mint& operator++() {
			_v++;
			if (_v == umod()) _v = 0;
			return *this;
		}
		mint& operator--() {
			if (_v == 0) _v = umod();
			_v--;
			return *this;
		}
		mint operator++(int) {
			mint result = *this;
			++*this;
			return result;
		}
		mint operator--(int) {
			mint result = *this;
			--*this;
			return result;
		}

		mint& operator+=(const mint& rhs) {
			_v += rhs._v;
			if (_v >= umod()) _v -= umod();
			return *this;
		}
		mint& operator-=(const mint& rhs) {
			_v += mod() - rhs._v;
			if (_v >= umod()) _v -= umod();
			return *this;
		}
		mint& operator*=(const mint& rhs) {
			_v = bt.mul(_v, rhs._v);
			return *this;
		}
		mint& operator/=(const mint& rhs) {
			return *this = *this * rhs.inv();
		}

		mint operator+() const {
			return *this;
		}
		mint operator-() const {
			return mint() - *this;
		}

		mint pow(long long n) const {
			assert(0 <= n);
			mint x = *this, r = 1;
			while (n) {
				if (n & 1) r *= x;
				x *= x;
				n >>= 1;
			}
			return r;
		}
		mint inv() const {
			auto eg = internal::inv_gcd(_v, mod());
			assert(eg.first == 1);
			return eg.second;
		}

		friend mint operator+(const mint& lhs, const mint& rhs) {
			return mint(lhs) += rhs;
		}
		friend mint operator-(const mint& lhs, const mint& rhs) {
			return mint(lhs) -= rhs;
		}
		friend mint operator*(const mint& lhs, const mint& rhs) {
			return mint(lhs) *= rhs;
		}
		friend mint operator/(const mint& lhs, const mint& rhs) {
			return mint(lhs) /= rhs;
		}
		friend bool operator==(const mint& lhs, const mint& rhs) {
			return lhs._v == rhs._v;
		}
		friend bool operator!=(const mint& lhs, const mint& rhs) {
			return lhs._v != rhs._v;
		}

	private:
		unsigned int _v;
		static internal::barrett bt;
		static unsigned int umod() {
			return bt.umod();
		}
	};
	template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

	using modint998244353 = static_modint<998244353>;
	using modint1000000007 = static_modint<1000000007>;
	using modint = dynamic_modint<-1>;

	namespace internal {

		template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

		template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

		template <class> struct is_dynamic_modint : public std::false_type {};
		template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

		template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

	}  // namespace internal

}  // namespace atcoder


#line 10 "atcoder/convolution.hpp"
#include <vector>

namespace atcoder {

	namespace internal {

		template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) {
			static constexpr int g = internal::primitive_root<mint::mod()>;
			int n = int(a.size());
			int h = internal::ceil_pow2(n);

			static bool first = true;
			static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
			if (first) {
				first = false;
				mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
				int cnt2 = bsf(mint::mod() - 1);
				mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
				for (int i = cnt2; i >= 2; i--) {
					// e^(2^i) == 1
					es[i - 2] = e;
					ies[i - 2] = ie;
					e *= e;
					ie *= ie;
				}
				mint now = 1;
				for (int i = 0; i < cnt2 - 2; i++) {
					sum_e[i] = es[i] * now;
					now *= ies[i];
				}
			}
			for (int ph = 1; ph <= h; ph++) {
				int w = 1 << (ph - 1), p = 1 << (h - ph);
				mint now = 1;
				for (int s = 0; s < w; s++) {
					int offset = s << (h - ph + 1);
					for (int i = 0; i < p; i++) {
						auto l = a[i + offset];
						auto r = a[i + offset + p] * now;
						a[i + offset] = l + r;
						a[i + offset + p] = l - r;
					}
					now *= sum_e[bsf(~(unsigned int)(s))];
				}
			}
		}

		template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) {
			static constexpr int g = internal::primitive_root<mint::mod()>;
			int n = int(a.size());
			int h = internal::ceil_pow2(n);

			static bool first = true;
			static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
			if (first) {
				first = false;
				mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
				int cnt2 = bsf(mint::mod() - 1);
				mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
				for (int i = cnt2; i >= 2; i--) {
					// e^(2^i) == 1
					es[i - 2] = e;
					ies[i - 2] = ie;
					e *= e;
					ie *= ie;
				}
				mint now = 1;
				for (int i = 0; i < cnt2 - 2; i++) {
					sum_ie[i] = ies[i] * now;
					now *= es[i];
				}
			}

			for (int ph = h; ph >= 1; ph--) {
				int w = 1 << (ph - 1), p = 1 << (h - ph);
				mint inow = 1;
				for (int s = 0; s < w; s++) {
					int offset = s << (h - ph + 1);
					for (int i = 0; i < p; i++) {
						auto l = a[i + offset];
						auto r = a[i + offset + p];
						a[i + offset] = l + r;
						a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val();
					}
					inow *= sum_ie[bsf(~(unsigned int)(s))];
				}
			}
		}

	}  // namespace internal

	template <class mint, internal::is_static_modint_t<mint>* = nullptr>
	std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};
		if (std::min(n, m) <= 60) {
			if (n < m) {
				std::swap(n, m);
				std::swap(a, b);
			}
			std::vector<mint> ans(n + m - 1);
			for (int i = 0; i < n; i++) {
				for (int j = 0; j < m; j++) {
					ans[i + j] += a[i] * b[j];
				}
			}
			return ans;
		}
		int z = 1 << internal::ceil_pow2(n + m - 1);
		a.resize(z);
		internal::butterfly(a);
		b.resize(z);
		internal::butterfly(b);
		for (int i = 0; i < z; i++) {
			a[i] *= b[i];
		}
		internal::butterfly_inv(a);
		a.resize(n + m - 1);
		mint iz = mint(z).inv();
		for (int i = 0; i < n + m - 1; i++)
			a[i] *= iz;
		return a;
	}

	template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
	std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};

		using mint = static_modint<mod>;
		std::vector<mint> a2(n), b2(m);
		for (int i = 0; i < n; i++) {
			a2[i] = mint(a[i]);
		}
		for (int i = 0; i < m; i++) {
			b2[i] = mint(b[i]);
		}
		auto c2 = convolution(move(a2), move(b2));
		std::vector<T> c(n + m - 1);
		for (int i = 0; i < n + m - 1; i++) {
			c[i] = c2[i].val();
		}
		return c;
	}

	std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) {
		int n = int(a.size()), m = int(b.size());
		if (!n || !m) return {};

		static constexpr unsigned long long MOD1 = 754974721;  // 2^24
		static constexpr unsigned long long MOD2 = 167772161;  // 2^25
		static constexpr unsigned long long MOD3 = 469762049;  // 2^26
		static constexpr unsigned long long M2M3 = MOD2 * MOD3;
		static constexpr unsigned long long M1M3 = MOD1 * MOD3;
		static constexpr unsigned long long M1M2 = MOD1 * MOD2;
		static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

		static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second;
		static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second;
		static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second;

		auto c1 = convolution<MOD1>(a, b);
		auto c2 = convolution<MOD2>(a, b);
		auto c3 = convolution<MOD3>(a, b);

		std::vector<long long> c(n + m - 1);
		for (int i = 0; i < n + m - 1; i++) {
			unsigned long long x = 0;
			x += (c1[i] * i1) % MOD1 * M2M3;
			x += (c2[i] * i2) % MOD2 * M1M3;
			x += (c3[i] * i3) % MOD3 * M1M2;
			// B = 2^63, -B <= x, r(real value) < B
			// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
			// r = c1[i] (mod MOD1)
			// focus on MOD1
			// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
			// r = x,
			//     x - M' + (0 or 2B),
			//     x - 2M' + (0, 2B or 4B),
			//     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
			// (r - x) = 0, (0)
			//           - M' + (0 or 2B), (1)
			//           -2M' + (0 or 2B or 4B), (2)
			//           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
			// we checked that
			//   ((1) mod MOD1) mod 5 = 2
			//   ((2) mod MOD1) mod 5 = 3
			//   ((3) mod MOD1) mod 5 = 4
			long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
			if (diff < 0) diff += MOD1;
			static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
			x -= offset[diff % 5];
			c[i] = x;
		}

		return c;
	}

}  // namespace atcoder
Back to top page