This documentation is automatically generated by online-judge-tools/verification-helper
require "../graph" require "../datastructure/union_find" module Graph(Edge, Edge2) # Decomposes the graph into each conected components. def decompose : {Array(self), Array({Int32, Int32}), Array(Array(Int32))} uf = UnionFind.new(size) each do |edge| uf.unite(edge.from, edge.to) end groups = uf.groups.to_a index = Array.new(size, {-1, -1}) groups.each_with_index do |group, i| group.each_with_index do |v, j| index[v] = {i, j} end end normalize = Array.new(groups.size) { |i| Array.new(groups[i].size, -1) } index.each_with_index { |(i, j), k| normalize[i][j] = k } graphs = Array.new(groups.size) { |i| self.class.new(groups[i].size) } if self.class.directed? each do |edge| i1, j1 = index[edge.from] _, j2 = index[edge.to] graphs[i1] << {j1, j2, edge.cost} end else edge_set = Set(Edge2).new each do |edge| if edge_set.add?(edge.sort) i1, j1 = index[edge.from] _, j2 = index[edge.to] graphs[i1] << {j1, j2, edge.cost} end end end {graphs, index, normalize} end end
# require "../graph" # require "./graph/edge" struct WeightedEdge(T) include Comparable(WeightedEdge(T)) property to : Int32, cost : T def initialize(@to, @cost : T) end def <=>(other : WeightedEdge(T)) {cost, to} <=> {other.cost, other.to} end def to_s(io) : Nil io << '(' << to << ", " << cost << ')' end def inspect(io) : Nil io << "->" << to << '(' << cost << ')' end end struct WeightedEdge2(T) include Comparable(WeightedEdge2(T)) property from : Int32, to : Int32, cost : T def initialize(@from, @to, @cost : T) end def initialize(@from, edge : WeightedEdge(T)) @to, @cost = edge.to, edge.cost end def <=>(other : WeightedEdge2(T)) {cost, from, to} <=> {other.cost, other.from, other.to} end def reverse : self WeightedEdge2(T).new(to, from, cost) end def sort : self WeightedEdge2(T).new(*{to, from}.minmax, cost) end def to_s(io) : Nil io << '(' << from << ", " << to << ", " << cost << ')' end def inspect(io) : Nil io << from << "->" << to << '(' << cost << ')' end end struct UnweightedEdge property to : Int32 def initialize(@to) end def initialize(@to, cost) end def cost : Int32 1 end def to_s(io) : Nil io << to end def inspect(io) : Nil io << "->" << to end end struct UnweightedEdge2 property from : Int32, to : Int32 def initialize(@from, @to) end def initialize(@from, @to, cost) end def initialize(@from, edge : UnweightedEdge) @to = edge.to end def cost : Int32 1 end def reverse : self UnweightedEdge2.new(to, from) end def sort : self UnweightedEdge2.new(*{to, from}.minmax) end def to_s(io) : Nil io << '(' << from << ", " << to << ')' end def inspect(io) : Nil io << from << "->" << to end end module Graph(Edge, Edge2) include Enumerable(Edge2) getter graph : Array(Array(Edge)) def initialize(size : Int) @graph = Array(Array(Edge)).new(size) { [] of Edge } end def initialize(size : Int, edges : Enumerable) initialize(size) add_edges(edges) end # Add *edge*. abstract def <<(edge : Edge2) # :ditto: def <<(edge : Tuple) : self self << Edge2.new(*edge) end def add_edges(edges : Enumerable) : self edges.each { |edge| self << edge } self end delegate size, :[], to: @graph # Yields each edge of the graph, ans returns `nil`. def each(&) : Nil (0...size).each do |v| graph[v].each do |edge| yield Edge2.new(v, edge) end end end def each_child(vertex : Int, parent, &block) : Nil graph[vertex].each do |edge| yield edge if edge.to != parent end end def each_child(vertex : Int, parent) graph[vertex].each.reject(&.to.== parent) end def reverse : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, reversed| reversed << edge.reverse end else dup end end def to_undirected : self if self.class.directed? each_with_object(self.class.new(size)) do |edge, graph| graph << edge << edge.reverse end else dup end end def to_s(io : IO) : Nil io << '[' join(", ", io) do |edge, io| edge.inspect io end io << ']' end def inspect(io : IO) : Nil io << "[\n" graph.each do |edges| io << " " << edges << ",\n" end io << ']' end end class DiGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) self end end class UnGraph(T) include Graph(WeightedEdge(T), WeightedEdge2(T)) def self.weighted? true end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable(WeightedEdge2(T))) super end def initialize(size : Int, edges : Enumerable({Int32, Int32, T})) super end def <<(edge : WeightedEdge2(T)) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << WeightedEdge.new(edge.to, edge.cost) @graph[edge.to] << WeightedEdge.new(edge.from, edge.cost) self end end class UnweightedDiGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? true end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) self end end class UnweightedUnGraph include Graph(UnweightedEdge, UnweightedEdge2) def self.weighted? false end def self.directed? false end def initialize(size : Int) super end def initialize(size : Int, edges : Enumerable) super end def <<(edge : UnweightedEdge2) : self raise IndexError.new unless 0 <= edge.from < size && 0 <= edge.to < size @graph[edge.from] << UnweightedEdge.new(edge.to) @graph[edge.to] << UnweightedEdge.new(edge.from) self end end # require "../datastructure/union_find" class UnionFind @d : Array(Int32) getter count_components : Int32 def initialize(n : Int) @d = Array.new(n, -1) @count_components = n end def initialize(n : Int, edges : Enumerable({Int32, Int32})) initialize(n) edges.each { |u, v| unite(u, v) } end def root(x : Int) @d[x] < 0 ? x : (@d[x] = root(@d[x])) end def unite(x : Int, y : Int) x = root(x) y = root(y) return false if x == y x, y = y, x if @d[x] > @d[y] @d[x] += @d[y] @d[y] = x @count_components -= 1 true end def same?(x : Int, y : Int) root(x) == root(y) end def size(x : Int) -@d[root(x)] end def groups groups = Hash(Int32, Set(Int32)).new { |h, k| h[k] = Set(Int32).new } @d.size.times do |i| groups[root(i)] << i end groups.values.to_set end end module Graph(Edge, Edge2) # Decomposes the graph into each conected components. def decompose : {Array(self), Array({Int32, Int32}), Array(Array(Int32))} uf = UnionFind.new(size) each do |edge| uf.unite(edge.from, edge.to) end groups = uf.groups.to_a index = Array.new(size, {-1, -1}) groups.each_with_index do |group, i| group.each_with_index do |v, j| index[v] = {i, j} end end normalize = Array.new(groups.size) { |i| Array.new(groups[i].size, -1) } index.each_with_index { |(i, j), k| normalize[i][j] = k } graphs = Array.new(groups.size) { |i| self.class.new(groups[i].size) } if self.class.directed? each do |edge| i1, j1 = index[edge.from] _, j2 = index[edge.to] graphs[i1] << {j1, j2, edge.cost} end else edge_set = Set(Edge2).new each do |edge| if edge_set.add?(edge.sort) i1, j1 = index[edge.from] _, j2 = index[edge.to] graphs[i1] << {j1, j2, edge.cost} end end end {graphs, index, normalize} end end