This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include <vector>
#include <optional>
#include <cassert>
using namespace std;
template <class T> class RUQRSQ {
int n;
vector<T> node;
vector<optional<T>> lazy;
static int ceil2(int n) {
int m = 1;
while (m < n) m *= 2;
return m;
}
void eval(int k, int l, int r) {
if (lazy[k]) {
node[k] = *lazy[k];
if (r - l > 1) {
lazy[2 * k + 0] = *lazy[k];
lazy[2 * k + 1] = *lazy[k];
}
lazy[k].reset();
}
}
void update_impl(int a, int b, const T& x, int k, int l, int r) {
eval(k, l, r);
if (b <= l || r <= a) {
return;
} else if (a <= l && r <= b) {
lazy[k] = x;
eval(k, l, r);
} else {
update_impl(a, b, x, 2 * k + 0, l, (l + r) / 2);
update_impl(a, b, x, 2 * k + 1, (l + r) / 2, r);
node[k] = node[2 * k + 0] + node[2 * k + 1];
}
}
T query_impl(int a, int b, int k, int l, int r) {
if (b <= l || r <= a) {
return 0;
}
eval(k, l, r);
if (a <= l && r <= b) {
return node[k];
} else {
auto vl = query_impl(a, b, 2 * k + 0, l, (l + r) / 2);
auto vr = query_impl(a, b, 2 * k + 1, (l + r) / 2, r);
return vl + vr;
}
}
public:
RUQRSQ(const vector<T>& vec) {
build(vec);
}
void build(const vector<T>& v) {
n = ceil2(v.size());
node.assign(n * 2, 0);
lazy.assign(n * 2, nullopt);
for (size_t i = 0; i < v.size(); ++i) {
node[i + n] = v[i];
}
for (int i = n - 1; i > 0; --i) {
node[i] = node[i * 2 + 0] + node[i * 2 + 1];
}
}
void update(int l, int r, const T& x) {
update_impl(l, r, x, 1, 0, n);
}
T operator[](int i) {
assert(0 <= i && i < n);
return operator()(i, i + 1);
}
T operator()(int l, int r) {
assert(0 <= l && l < r && r <= n);
return query_impl(l, r, 1, 0, n);
}
vector<T> to_a() {
vector<T> res(n);
for (int i = 0; i < n; ++i) {
res[i] = operator[](i);
}
return res;
}
};
#line 2 "old/RUQRSQ.cpp"
#include <vector>
#include <optional>
#include <cassert>
using namespace std;
template <class T> class RUQRSQ {
int n;
vector<T> node;
vector<optional<T>> lazy;
static int ceil2(int n) {
int m = 1;
while (m < n) m *= 2;
return m;
}
void eval(int k, int l, int r) {
if (lazy[k]) {
node[k] = *lazy[k];
if (r - l > 1) {
lazy[2 * k + 0] = *lazy[k];
lazy[2 * k + 1] = *lazy[k];
}
lazy[k].reset();
}
}
void update_impl(int a, int b, const T& x, int k, int l, int r) {
eval(k, l, r);
if (b <= l || r <= a) {
return;
} else if (a <= l && r <= b) {
lazy[k] = x;
eval(k, l, r);
} else {
update_impl(a, b, x, 2 * k + 0, l, (l + r) / 2);
update_impl(a, b, x, 2 * k + 1, (l + r) / 2, r);
node[k] = node[2 * k + 0] + node[2 * k + 1];
}
}
T query_impl(int a, int b, int k, int l, int r) {
if (b <= l || r <= a) {
return 0;
}
eval(k, l, r);
if (a <= l && r <= b) {
return node[k];
} else {
auto vl = query_impl(a, b, 2 * k + 0, l, (l + r) / 2);
auto vr = query_impl(a, b, 2 * k + 1, (l + r) / 2, r);
return vl + vr;
}
}
public:
RUQRSQ(const vector<T>& vec) {
build(vec);
}
void build(const vector<T>& v) {
n = ceil2(v.size());
node.assign(n * 2, 0);
lazy.assign(n * 2, nullopt);
for (size_t i = 0; i < v.size(); ++i) {
node[i + n] = v[i];
}
for (int i = n - 1; i > 0; --i) {
node[i] = node[i * 2 + 0] + node[i * 2 + 1];
}
}
void update(int l, int r, const T& x) {
update_impl(l, r, x, 1, 0, n);
}
T operator[](int i) {
assert(0 <= i && i < n);
return operator()(i, i + 1);
}
T operator()(int l, int r) {
assert(0 <= l && l < r && r <= n);
return query_impl(l, r, 1, 0, n);
}
vector<T> to_a() {
vector<T> res(n);
for (int i = 0; i < n; ++i) {
res[i] = operator[](i);
}
return res;
}
};