library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub yuruhi/library

:warning: atcoder/string.hpp

Code

#ifndef ATCODER_STRING_HPP
#define ATCODER_STRING_HPP 1

#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

	namespace internal {

		std::vector<int> sa_naive(const std::vector<int>& s) {
			int n = int(s.size());
			std::vector<int> sa(n);
			std::iota(sa.begin(), sa.end(), 0);
			std::sort(sa.begin(), sa.end(), [&](int l, int r) {
				if (l == r) return false;
				while (l < n && r < n) {
					if (s[l] != s[r]) return s[l] < s[r];
					l++;
					r++;
				}
				return l == n;
			});
			return sa;
		}

		std::vector<int> sa_doubling(const std::vector<int>& s) {
			int n = int(s.size());
			std::vector<int> sa(n), rnk = s, tmp(n);
			std::iota(sa.begin(), sa.end(), 0);
			for (int k = 1; k < n; k *= 2) {
				auto cmp = [&](int x, int y) {
					if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
					int rx = x + k < n ? rnk[x + k] : -1;
					int ry = y + k < n ? rnk[y + k] : -1;
					return rx < ry;
				};
				std::sort(sa.begin(), sa.end(), cmp);
				tmp[sa[0]] = 0;
				for (int i = 1; i < n; i++) {
					tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
				}
				std::swap(tmp, rnk);
			}
			return sa;
		}

		// SA-IS, linear-time suffix array construction
		// Reference:
		// G. Nong, S. Zhang, and W. H. Chan,
		// Two Efficient Algorithms for Linear Time Suffix Array Construction
		template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
		std::vector<int> sa_is(const std::vector<int>& s, int upper) {
			int n = int(s.size());
			if (n == 0) return {};
			if (n == 1) return {0};
			if (n == 2) {
				if (s[0] < s[1]) {
					return {0, 1};
				} else {
					return {1, 0};
				}
			}
			if (n < THRESHOLD_NAIVE) {
				return sa_naive(s);
			}
			if (n < THRESHOLD_DOUBLING) {
				return sa_doubling(s);
			}

			std::vector<int> sa(n);
			std::vector<bool> ls(n);
			for (int i = n - 2; i >= 0; i--) {
				ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
			}
			std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
			for (int i = 0; i < n; i++) {
				if (!ls[i]) {
					sum_s[s[i]]++;
				} else {
					sum_l[s[i] + 1]++;
				}
			}
			for (int i = 0; i <= upper; i++) {
				sum_s[i] += sum_l[i];
				if (i < upper) sum_l[i + 1] += sum_s[i];
			}

			auto induce = [&](const std::vector<int>& lms) {
				std::fill(sa.begin(), sa.end(), -1);
				std::vector<int> buf(upper + 1);
				std::copy(sum_s.begin(), sum_s.end(), buf.begin());
				for (auto d : lms) {
					if (d == n) continue;
					sa[buf[s[d]]++] = d;
				}
				std::copy(sum_l.begin(), sum_l.end(), buf.begin());
				sa[buf[s[n - 1]]++] = n - 1;
				for (int i = 0; i < n; i++) {
					int v = sa[i];
					if (v >= 1 && !ls[v - 1]) {
						sa[buf[s[v - 1]]++] = v - 1;
					}
				}
				std::copy(sum_l.begin(), sum_l.end(), buf.begin());
				for (int i = n - 1; i >= 0; i--) {
					int v = sa[i];
					if (v >= 1 && ls[v - 1]) {
						sa[--buf[s[v - 1] + 1]] = v - 1;
					}
				}
			};

			std::vector<int> lms_map(n + 1, -1);
			int m = 0;
			for (int i = 1; i < n; i++) {
				if (!ls[i - 1] && ls[i]) {
					lms_map[i] = m++;
				}
			}
			std::vector<int> lms;
			lms.reserve(m);
			for (int i = 1; i < n; i++) {
				if (!ls[i - 1] && ls[i]) {
					lms.push_back(i);
				}
			}

			induce(lms);

			if (m) {
				std::vector<int> sorted_lms;
				sorted_lms.reserve(m);
				for (int v : sa) {
					if (lms_map[v] != -1) sorted_lms.push_back(v);
				}
				std::vector<int> rec_s(m);
				int rec_upper = 0;
				rec_s[lms_map[sorted_lms[0]]] = 0;
				for (int i = 1; i < m; i++) {
					int l = sorted_lms[i - 1], r = sorted_lms[i];
					int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
					int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
					bool same = true;
					if (end_l - l != end_r - r) {
						same = false;
					} else {
						while (l < end_l) {
							if (s[l] != s[r]) {
								break;
							}
							l++;
							r++;
						}
						if (l == n || s[l] != s[r]) same = false;
					}
					if (!same) rec_upper++;
					rec_s[lms_map[sorted_lms[i]]] = rec_upper;
				}

				auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

				for (int i = 0; i < m; i++) {
					sorted_lms[i] = lms[rec_sa[i]];
				}
				induce(sorted_lms);
			}
			return sa;
		}

	}  // namespace internal

	std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
		assert(0 <= upper);
		for (int d : s) {
			assert(0 <= d && d <= upper);
		}
		auto sa = internal::sa_is(s, upper);
		return sa;
	}

	template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
		int n = int(s.size());
		std::vector<int> idx(n);
		iota(idx.begin(), idx.end(), 0);
		sort(idx.begin(), idx.end(), [&](int l, int r) {
			return s[l] < s[r];
		});
		std::vector<int> s2(n);
		int now = 0;
		for (int i = 0; i < n; i++) {
			if (i && s[idx[i - 1]] != s[idx[i]]) now++;
			s2[idx[i]] = now;
		}
		return internal::sa_is(s2, now);
	}

	std::vector<int> suffix_array(const std::string& s) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return internal::sa_is(s2, 255);
	}

	// Reference:
	// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
	// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
	// Applications
	template <class T> std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) {
		int n = int(s.size());
		assert(n >= 1);
		std::vector<int> rnk(n);
		for (int i = 0; i < n; i++) {
			rnk[sa[i]] = i;
		}
		std::vector<int> lcp(n - 1);
		int h = 0;
		for (int i = 0; i < n; i++) {
			if (h > 0) h--;
			if (rnk[i] == 0) continue;
			int j = sa[rnk[i] - 1];
			for (; j + h < n && i + h < n; h++) {
				if (s[j + h] != s[i + h]) break;
			}
			lcp[rnk[i] - 1] = h;
		}
		return lcp;
	}

	std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return lcp_array(s2, sa);
	}

	// Reference:
	// D. Gusfield,
	// Algorithms on Strings, Trees, and Sequences: Computer Science and
	// Computational Biology
	template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
		int n = int(s.size());
		if (n == 0) return {};
		std::vector<int> z(n);
		z[0] = 0;
		for (int i = 1, j = 0; i < n; i++) {
			int& k = z[i];
			k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
			while (i + k < n && s[k] == s[i + k])
				k++;
			if (j + z[j] < i + z[i]) j = i;
		}
		z[0] = n;
		return z;
	}

	std::vector<int> z_algorithm(const std::string& s) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return z_algorithm(s2);
	}

}  // namespace atcoder

#endif  // ATCODER_STRING_HPP
#line 1 "atcoder/string.hpp"



#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

	namespace internal {

		std::vector<int> sa_naive(const std::vector<int>& s) {
			int n = int(s.size());
			std::vector<int> sa(n);
			std::iota(sa.begin(), sa.end(), 0);
			std::sort(sa.begin(), sa.end(), [&](int l, int r) {
				if (l == r) return false;
				while (l < n && r < n) {
					if (s[l] != s[r]) return s[l] < s[r];
					l++;
					r++;
				}
				return l == n;
			});
			return sa;
		}

		std::vector<int> sa_doubling(const std::vector<int>& s) {
			int n = int(s.size());
			std::vector<int> sa(n), rnk = s, tmp(n);
			std::iota(sa.begin(), sa.end(), 0);
			for (int k = 1; k < n; k *= 2) {
				auto cmp = [&](int x, int y) {
					if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
					int rx = x + k < n ? rnk[x + k] : -1;
					int ry = y + k < n ? rnk[y + k] : -1;
					return rx < ry;
				};
				std::sort(sa.begin(), sa.end(), cmp);
				tmp[sa[0]] = 0;
				for (int i = 1; i < n; i++) {
					tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
				}
				std::swap(tmp, rnk);
			}
			return sa;
		}

		// SA-IS, linear-time suffix array construction
		// Reference:
		// G. Nong, S. Zhang, and W. H. Chan,
		// Two Efficient Algorithms for Linear Time Suffix Array Construction
		template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
		std::vector<int> sa_is(const std::vector<int>& s, int upper) {
			int n = int(s.size());
			if (n == 0) return {};
			if (n == 1) return {0};
			if (n == 2) {
				if (s[0] < s[1]) {
					return {0, 1};
				} else {
					return {1, 0};
				}
			}
			if (n < THRESHOLD_NAIVE) {
				return sa_naive(s);
			}
			if (n < THRESHOLD_DOUBLING) {
				return sa_doubling(s);
			}

			std::vector<int> sa(n);
			std::vector<bool> ls(n);
			for (int i = n - 2; i >= 0; i--) {
				ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
			}
			std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
			for (int i = 0; i < n; i++) {
				if (!ls[i]) {
					sum_s[s[i]]++;
				} else {
					sum_l[s[i] + 1]++;
				}
			}
			for (int i = 0; i <= upper; i++) {
				sum_s[i] += sum_l[i];
				if (i < upper) sum_l[i + 1] += sum_s[i];
			}

			auto induce = [&](const std::vector<int>& lms) {
				std::fill(sa.begin(), sa.end(), -1);
				std::vector<int> buf(upper + 1);
				std::copy(sum_s.begin(), sum_s.end(), buf.begin());
				for (auto d : lms) {
					if (d == n) continue;
					sa[buf[s[d]]++] = d;
				}
				std::copy(sum_l.begin(), sum_l.end(), buf.begin());
				sa[buf[s[n - 1]]++] = n - 1;
				for (int i = 0; i < n; i++) {
					int v = sa[i];
					if (v >= 1 && !ls[v - 1]) {
						sa[buf[s[v - 1]]++] = v - 1;
					}
				}
				std::copy(sum_l.begin(), sum_l.end(), buf.begin());
				for (int i = n - 1; i >= 0; i--) {
					int v = sa[i];
					if (v >= 1 && ls[v - 1]) {
						sa[--buf[s[v - 1] + 1]] = v - 1;
					}
				}
			};

			std::vector<int> lms_map(n + 1, -1);
			int m = 0;
			for (int i = 1; i < n; i++) {
				if (!ls[i - 1] && ls[i]) {
					lms_map[i] = m++;
				}
			}
			std::vector<int> lms;
			lms.reserve(m);
			for (int i = 1; i < n; i++) {
				if (!ls[i - 1] && ls[i]) {
					lms.push_back(i);
				}
			}

			induce(lms);

			if (m) {
				std::vector<int> sorted_lms;
				sorted_lms.reserve(m);
				for (int v : sa) {
					if (lms_map[v] != -1) sorted_lms.push_back(v);
				}
				std::vector<int> rec_s(m);
				int rec_upper = 0;
				rec_s[lms_map[sorted_lms[0]]] = 0;
				for (int i = 1; i < m; i++) {
					int l = sorted_lms[i - 1], r = sorted_lms[i];
					int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
					int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
					bool same = true;
					if (end_l - l != end_r - r) {
						same = false;
					} else {
						while (l < end_l) {
							if (s[l] != s[r]) {
								break;
							}
							l++;
							r++;
						}
						if (l == n || s[l] != s[r]) same = false;
					}
					if (!same) rec_upper++;
					rec_s[lms_map[sorted_lms[i]]] = rec_upper;
				}

				auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

				for (int i = 0; i < m; i++) {
					sorted_lms[i] = lms[rec_sa[i]];
				}
				induce(sorted_lms);
			}
			return sa;
		}

	}  // namespace internal

	std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
		assert(0 <= upper);
		for (int d : s) {
			assert(0 <= d && d <= upper);
		}
		auto sa = internal::sa_is(s, upper);
		return sa;
	}

	template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
		int n = int(s.size());
		std::vector<int> idx(n);
		iota(idx.begin(), idx.end(), 0);
		sort(idx.begin(), idx.end(), [&](int l, int r) {
			return s[l] < s[r];
		});
		std::vector<int> s2(n);
		int now = 0;
		for (int i = 0; i < n; i++) {
			if (i && s[idx[i - 1]] != s[idx[i]]) now++;
			s2[idx[i]] = now;
		}
		return internal::sa_is(s2, now);
	}

	std::vector<int> suffix_array(const std::string& s) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return internal::sa_is(s2, 255);
	}

	// Reference:
	// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
	// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
	// Applications
	template <class T> std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) {
		int n = int(s.size());
		assert(n >= 1);
		std::vector<int> rnk(n);
		for (int i = 0; i < n; i++) {
			rnk[sa[i]] = i;
		}
		std::vector<int> lcp(n - 1);
		int h = 0;
		for (int i = 0; i < n; i++) {
			if (h > 0) h--;
			if (rnk[i] == 0) continue;
			int j = sa[rnk[i] - 1];
			for (; j + h < n && i + h < n; h++) {
				if (s[j + h] != s[i + h]) break;
			}
			lcp[rnk[i] - 1] = h;
		}
		return lcp;
	}

	std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return lcp_array(s2, sa);
	}

	// Reference:
	// D. Gusfield,
	// Algorithms on Strings, Trees, and Sequences: Computer Science and
	// Computational Biology
	template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
		int n = int(s.size());
		if (n == 0) return {};
		std::vector<int> z(n);
		z[0] = 0;
		for (int i = 1, j = 0; i < n; i++) {
			int& k = z[i];
			k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
			while (i + k < n && s[k] == s[i + k])
				k++;
			if (j + z[j] < i + z[i]) j = i;
		}
		z[0] = n;
		return z;
	}

	std::vector<int> z_algorithm(const std::string& s) {
		int n = int(s.size());
		std::vector<int> s2(n);
		for (int i = 0; i < n; i++) {
			s2[i] = s[i];
		}
		return z_algorithm(s2);
	}

}  // namespace atcoder
Back to top page