This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "./GraphTemplate.cpp"
#include <algorithm>
#include <limits>
bool WarashallFloyd(Matrix& dist, Weight INF = std::numeric_limits<Weight>::max()) {
std::size_t n = dist.size();
for (std::size_t i = 0; i < n; ++i) {
for (std::size_t j = 0; j < n; ++j) {
for (std::size_t k = 0; k < n; ++k) {
if (dist[j][i] == INF || dist[i][k] == INF) continue;
dist[j][k] = std::min(dist[j][k], dist[j][i] + dist[i][k]);
}
}
}
for (std::size_t i = 0; i < n; ++i) {
if (dist[i][i] < 0) return true;
}
return false;
}
void WarashallFloydAddEdge(Matrix& dist, const Edge2& e) {
std::size_t n = dist.size();
for (std::size_t i = 0; i < n; ++i) {
for (std::size_t j = 0; j < n; ++j) {
dist[i][j] = std::min(
dist[i][j],
std::min(dist[i][e.from] + dist[e.to][j], dist[i][e.to] + dist[e.from][j]) +
e.cost);
}
}
}
#line 2 "Graph/GraphTemplate.cpp"
#include <vector>
#include <utility>
#include <iostream>
#include <limits>
using Weight = long long;
constexpr Weight INF = std::numeric_limits<Weight>::max();
struct Edge {
int to;
Weight cost;
Edge() : to(-1), cost(-1) {}
Edge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}
friend bool operator<(const Edge& e1, const Edge& e2) {
return e1.cost < e2.cost;
}
friend bool operator>(const Edge& e1, const Edge& e2) {
return e1.cost > e2.cost;
}
friend std::ostream& operator<<(std::ostream& os, const Edge& e) {
return os << "->" << e.to << '(' << e.cost << ')';
}
};
using UnWeightedGraph = std::vector<std::vector<int>>;
using Graph = std::vector<std::vector<Edge>>;
struct Edge2 {
int from, to;
Weight cost;
Edge2() : from(-1), to(-1), cost(0) {}
Edge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}
friend bool operator<(const Edge2& e1, const Edge2& e2) {
return e1.cost < e2.cost;
}
friend bool operator>(const Edge2& e1, const Edge2& e2) {
return e1.cost > e2.cost;
}
friend std::ostream& operator<<(std::ostream& os, const Edge2& e) {
return os << e.from << "->" << e.to << '(' << e.cost << ')';
}
};
using UnWeightedEdges = std::vector<std::pair<int, int>>;
using Edges = std::vector<Edge2>;
using Matrix = std::vector<std::vector<Weight>>;
auto add_edge(UnWeightedGraph& graph, int v, int u) {
graph[v].push_back(u);
graph[u].push_back(v);
}
auto add_edge(Graph& graph, int v, int u, Weight cost) {
graph[v].emplace_back(u, cost);
graph[u].emplace_back(v, cost);
}
auto to_graph(const UnWeightedGraph& graph, Weight cost = 1) {
Graph result(graph.size());
for (std::size_t i = 0; i < graph.size(); ++i) {
for (int v : graph[i]) {
result[i].emplace_back(v, cost);
}
}
return result;
}
auto to_unweighted_graph(const Graph& graph) {
UnWeightedGraph result(graph.size());
for (std::size_t i = 0; i < graph.size(); ++i) {
for (auto [v, cost] : graph[i]) {
result[i].push_back(v);
}
}
return result;
}
auto to_edges(const UnWeightedGraph& graph, bool unique = false) {
std::vector<std::pair<int, int>> edges;
for (std::size_t i = 0; i < graph.size(); ++i) {
for (int v : graph[i]) {
if (!unique || static_cast<int>(i) < v) edges.emplace_back(i, v);
}
}
return edges;
}
auto to_edges(const Graph& graph) {
Edges edges;
for (std::size_t i = 0; i < graph.size(); ++i) {
for (auto [v, cost] : graph[i]) {
edges.emplace_back(i, v, cost);
}
}
return edges;
}
#line 3 "Graph/WarashallFloyd.cpp"
#include <algorithm>
#line 5 "Graph/WarashallFloyd.cpp"
bool WarashallFloyd(Matrix& dist, Weight INF = std::numeric_limits<Weight>::max()) {
std::size_t n = dist.size();
for (std::size_t i = 0; i < n; ++i) {
for (std::size_t j = 0; j < n; ++j) {
for (std::size_t k = 0; k < n; ++k) {
if (dist[j][i] == INF || dist[i][k] == INF) continue;
dist[j][k] = std::min(dist[j][k], dist[j][i] + dist[i][k]);
}
}
}
for (std::size_t i = 0; i < n; ++i) {
if (dist[i][i] < 0) return true;
}
return false;
}
void WarashallFloydAddEdge(Matrix& dist, const Edge2& e) {
std::size_t n = dist.size();
for (std::size_t i = 0; i < n; ++i) {
for (std::size_t j = 0; j < n; ++j) {
dist[i][j] = std::min(
dist[i][j],
std::min(dist[i][e.from] + dist[e.to][j], dist[i][e.to] + dist[e.from][j]) +
e.cost);
}
}
}