This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "./GraphTemplate.cpp"
#include <vector>
#include <queue>
Graph SpanningTree(const Graph& graph, int root) {
Graph result(graph.size());
std::queue<int> q;
q.push(root);
std::vector<bool> flag(graph.size());
flag[root] = true;
while (!q.empty()) {
int f = q.front();
q.pop();
for (const Edge& e : graph[f]) {
if (!flag[e.to]) {
result[f].push_back(e);
flag[e.to] = true;
q.push(e.to);
}
}
}
return result;
}
#line 2 "Graph/GraphTemplate.cpp"
#include <vector>
#include <utility>
#include <iostream>
#include <limits>
using Weight = long long;
constexpr Weight INF = std::numeric_limits<Weight>::max();
struct Edge {
int to;
Weight cost;
Edge() : to(-1), cost(-1) {}
Edge(int _to, Weight _cost = 1) : to(_to), cost(_cost) {}
friend bool operator<(const Edge& e1, const Edge& e2) {
return e1.cost < e2.cost;
}
friend bool operator>(const Edge& e1, const Edge& e2) {
return e1.cost > e2.cost;
}
friend std::ostream& operator<<(std::ostream& os, const Edge& e) {
return os << "->" << e.to << '(' << e.cost << ')';
}
};
using UnWeightedGraph = std::vector<std::vector<int>>;
using Graph = std::vector<std::vector<Edge>>;
struct Edge2 {
int from, to;
Weight cost;
Edge2() : from(-1), to(-1), cost(0) {}
Edge2(int _from, int _to, Weight _cost) : from(_from), to(_to), cost(_cost) {}
friend bool operator<(const Edge2& e1, const Edge2& e2) {
return e1.cost < e2.cost;
}
friend bool operator>(const Edge2& e1, const Edge2& e2) {
return e1.cost > e2.cost;
}
friend std::ostream& operator<<(std::ostream& os, const Edge2& e) {
return os << e.from << "->" << e.to << '(' << e.cost << ')';
}
};
using UnWeightedEdges = std::vector<std::pair<int, int>>;
using Edges = std::vector<Edge2>;
using Matrix = std::vector<std::vector<Weight>>;
auto add_edge(UnWeightedGraph& graph, int v, int u) {
graph[v].push_back(u);
graph[u].push_back(v);
}
auto add_edge(Graph& graph, int v, int u, Weight cost) {
graph[v].emplace_back(u, cost);
graph[u].emplace_back(v, cost);
}
auto to_graph(const UnWeightedGraph& graph, Weight cost = 1) {
Graph result(graph.size());
for (std::size_t i = 0; i < graph.size(); ++i) {
for (int v : graph[i]) {
result[i].emplace_back(v, cost);
}
}
return result;
}
auto to_unweighted_graph(const Graph& graph) {
UnWeightedGraph result(graph.size());
for (std::size_t i = 0; i < graph.size(); ++i) {
for (auto [v, cost] : graph[i]) {
result[i].push_back(v);
}
}
return result;
}
auto to_edges(const UnWeightedGraph& graph, bool unique = false) {
std::vector<std::pair<int, int>> edges;
for (std::size_t i = 0; i < graph.size(); ++i) {
for (int v : graph[i]) {
if (!unique || static_cast<int>(i) < v) edges.emplace_back(i, v);
}
}
return edges;
}
auto to_edges(const Graph& graph) {
Edges edges;
for (std::size_t i = 0; i < graph.size(); ++i) {
for (auto [v, cost] : graph[i]) {
edges.emplace_back(i, v, cost);
}
}
return edges;
}
#line 4 "Graph/SpanningTree.cpp"
#include <queue>
Graph SpanningTree(const Graph& graph, int root) {
Graph result(graph.size());
std::queue<int> q;
q.push(root);
std::vector<bool> flag(graph.size());
flag[root] = true;
while (!q.empty()) {
int f = q.front();
q.pop();
for (const Edge& e : graph[f]) {
if (!flag[e.to]) {
result[f].push_back(e);
flag[e.to] = true;
q.push(e.to);
}
}
}
return result;
}