This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "./FlowTemplate.cpp"
#include <vector>
#include <algorithm>
#include <queue>
#include <cassert>
class Dinic {
int n;
GraphF graph;
std::vector<int> level, iter;
void bfs(int s) {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
std::queue<int> q;
q.push(s);
while (!q.empty()) {
int v = q.front();
q.pop();
for (auto& e : graph[v]) {
if (e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[v] + 1;
q.push(e.to);
}
}
}
}
FLOW dfs(int v, int t, FLOW f) {
if (v == t) return f;
for (int i = iter[v]; i < graph[v].size(); ++i) {
auto& e = graph[v][i];
if (e.cap > 0 && level[v] < level[e.to]) {
FLOW d = dfs(e.to, t, std::min(f, e.cap));
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
Dinic(std::size_t _n) : n(_n), graph(n), level(n), iter(n) {}
const GraphF& get_graph() {
return graph;
}
void add_edge(int from, int to, FLOW cap) {
assert(0 <= from && from < n);
assert(0 <= to && to < n);
graph[from].emplace_back(to, graph[to].size(), cap);
graph[to].emplace_back(from, graph[from].size() - 1, 0);
}
FLOW solve(int s, int t) {
FLOW result = 0;
while (true) {
bfs(s);
if (level[t] < 0) return result;
std::fill(iter.begin(), iter.end(), 0);
FLOW f;
while ((f = dfs(s, t, INF_FLOW)) > 0) result += f;
}
}
};
#line 2 "Graph/FlowTemplate.cpp"
#include <vector>
#include <iostream>
#include <limits>
using FLOW = long long;
constexpr FLOW INF_FLOW = std::numeric_limits<FLOW>::max();
struct EdgeF {
int to, rev;
FLOW cap;
EdgeF() : to(-1), rev(-1), cap(-1) {}
EdgeF(int t, int r, FLOW c) : to(t), rev(r), cap(c) {}
friend std::ostream& operator<<(std::ostream& os, const EdgeF& e) {
return os << "->" << e.to << "(" << e.cap << ")";
}
};
using GraphF = std::vector<std::vector<EdgeF>>;
#line 4 "Graph/Dinic.cpp"
#include <algorithm>
#include <queue>
#include <cassert>
class Dinic {
int n;
GraphF graph;
std::vector<int> level, iter;
void bfs(int s) {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
std::queue<int> q;
q.push(s);
while (!q.empty()) {
int v = q.front();
q.pop();
for (auto& e : graph[v]) {
if (e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[v] + 1;
q.push(e.to);
}
}
}
}
FLOW dfs(int v, int t, FLOW f) {
if (v == t) return f;
for (int i = iter[v]; i < graph[v].size(); ++i) {
auto& e = graph[v][i];
if (e.cap > 0 && level[v] < level[e.to]) {
FLOW d = dfs(e.to, t, std::min(f, e.cap));
if (d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
public:
Dinic(std::size_t _n) : n(_n), graph(n), level(n), iter(n) {}
const GraphF& get_graph() {
return graph;
}
void add_edge(int from, int to, FLOW cap) {
assert(0 <= from && from < n);
assert(0 <= to && to < n);
graph[from].emplace_back(to, graph[to].size(), cap);
graph[to].emplace_back(from, graph[from].size() - 1, 0);
}
FLOW solve(int s, int t) {
FLOW result = 0;
while (true) {
bfs(s);
if (level[t] < 0) return result;
std::fill(iter.begin(), iter.end(), 0);
FLOW f;
while ((f = dfs(s, t, INF_FLOW)) > 0) result += f;
}
}
};