This documentation is automatically generated by online-judge-tools/verification-helper
#pragma once
#include "./../atcoder/segtree.hpp"
#include <algorithm>
#include <limits>
namespace internal {
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class S> constexpr S op_sum(S x, S y) {
return x + y;
}
template <class S> constexpr S e_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S e_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S e_zero() {
return static_cast<S>(0);
}
} // namespace internal
template <class S>
using RangeMaxQuery = atcoder::segtree<S, internal::op_max<S>, internal::e_min<S>>;
template <class S>
using RangeMinQuery = atcoder::segtree<S, internal::op_min<S>, internal::e_max<S>>;
template <class S>
using RangeSumQuery = atcoder::segtree<S, internal::op_sum<S>, internal::e_zero<S>>;
#line 1 "atcoder/segtree.hpp"
#include <algorithm>
#line 1 "atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n))
x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 6 "atcoder/segtree.hpp"
#include <cassert>
#include <vector>
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
segtree(int n) : segtree(std::vector<S>(n, e())) {}
segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
return d[p + size];
}
S operator[](int p) {
return get(p);
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S operator()(int l, int r) {
return prod(l, r);
}
S all_prod() {
return d[1];
}
template <bool (*f)(S)> int max_right(int l) {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
std::vector<S> to_a() {
std::vector<S> result(_n);
for (int i = 0; i < _n; ++i) {
result[i] = get(i);
}
return result;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
};
} // namespace atcoder
#line 4 "DataStructure/SegmentTree.cpp"
#include <limits>
namespace internal {
template <class S> constexpr S op_max(S x, S y) {
return std::max(x, y);
}
template <class S> constexpr S op_min(S x, S y) {
return std::min(x, y);
}
template <class S> constexpr S op_sum(S x, S y) {
return x + y;
}
template <class S> constexpr S e_min() {
return std::numeric_limits<S>::min();
}
template <class S> constexpr S e_max() {
return std::numeric_limits<S>::max();
}
template <class S> constexpr S e_zero() {
return static_cast<S>(0);
}
} // namespace internal
template <class S>
using RangeMaxQuery = atcoder::segtree<S, internal::op_max<S>, internal::e_min<S>>;
template <class S>
using RangeMinQuery = atcoder::segtree<S, internal::op_min<S>, internal::e_max<S>>;
template <class S>
using RangeSumQuery = atcoder::segtree<S, internal::op_sum<S>, internal::e_zero<S>>;